2022年湖北省鄂州市第九中学高二数学文摸底试卷含解析_第1页
2022年湖北省鄂州市第九中学高二数学文摸底试卷含解析_第2页
2022年湖北省鄂州市第九中学高二数学文摸底试卷含解析_第3页
2022年湖北省鄂州市第九中学高二数学文摸底试卷含解析_第4页
2022年湖北省鄂州市第九中学高二数学文摸底试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年湖北省鄂州市第九中学高二数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,实数、、满足,且,若实数是函数的一个零点,则下列不等式中,不可能成立的是(

).(A)(B)(C)(D)参考答案:D略2.计算机执行右边的程序语句后,输出的结果是(

)A.,

B.,C.,

D.,参考答案:B3.对于曲线C:+=1,给出下面四个命题: (1)曲线C不可能表示椭圆; (2)若曲线C表示焦点在x轴上的椭圆,则1<k<; (3)若曲线C表示双曲线,则k<1或k>4; (4)当1<k<4时曲线C表示椭圆, 其中正确的是() A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4)参考答案:A【考点】圆锥曲线的共同特征. 【专题】圆锥曲线的定义、性质与方程. 【分析】根据曲线方程的特点,结合椭圆、双曲线的标准方程分别判断即可. 【解答】解:(1)当,即k∈(1,)∪(,4)时,曲线C表示椭圆,∴(1)错误; (2)若曲线C表示焦点在x轴上的椭圆,则4﹣k>k﹣1>0,解得1<k<,∴(2)正确; (3)若曲线C表示双曲线,则(4﹣k)(k﹣1)<0,解得k>4或k<1,∴(3)正确; (4)当k=时,4﹣k=k﹣1,此时曲线表示为圆,∴(4)错误. 故选A. 【点评】本题主要考查圆锥曲线的方程,根据椭圆、双曲线的标准方程和定义是解决本题的关键. 4.设{an}是有正数组成的等比数列,为其前n项和。已知a2a4=1,,则(

)A.

B.

C.

D.

参考答案:B略5.如图,平行六面体中,则等于(

)A.

B.

C.

D.参考答案:B6.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的不同选法共

)种。A

27

B

48

C

21

D

24参考答案:B略7.已知空间四点A(2,1,-3),B(-2,3,-4),C(3,0,1),D(1,4,m),若A、B、C、D四点共面,则m=(

)A.-7

B.-22

C.19

D.5参考答案:B8.已知等比数列的值为

(

)

A.

B.

C.—

D.—参考答案:C9.反证法证明三角形的内角中至少有一个不小于60°,反设正确的是()A.假设三内角都不大于60°B.假设三内角都小于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个小于60°参考答案:B【考点】R9:反证法与放缩法.【分析】由于本题所给的命题是一个特称命题,故它的否定即为符合条件的反设,写出其否定,对照四个选项找出答案即可【解答】解:用反证法证明命题:“一个三角形中,至少有一个内角不小于60°”时,应由于此命题是特称命题,故应假设:“三角形中三个内角都小于60°”故选:B【点评】本题考查反证法的基础概念,解答的关键是理解反证法的规则及特称命题的否定是全称命题,本题是基础概念考查题,要注意记忆与领会.10.从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A. B. C. D.0参考答案:B【考点】圆的切线方程.【分析】先求圆心到P的距离,再求两切线夹角一半的三角函数值,然后求出结果.【解答】解:圆x2﹣2x+y2﹣2y+1=0的圆心为M(1,1),半径为1,从外一点P(3,2)向这个圆作两条切线,则点P到圆心M的距离等于,每条切线与PM的夹角的正切值等于,所以两切线夹角的正切值为,该角的余弦值等于,故选B.【点评】本题考查圆的切线方程,两点间的距离公式,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.已知指数函数y=f(x),对数函数y=g(x)和幂函数y=h(x)的图象都过P(,2),如果f(x1)=g(x2)=h(x3)=4,那么xl+x2+x3=

.参考答案:【考点】49:指数函数的图象与性质.【分析】利用待定系数法分别求出,指数函数,对数函数和幂函数的表达式,然后解方程即可.【解答】解:分别设f(x)=ax,g(x)=logax,h(x)=xα,∵函数的图象都经过点P(,2),∴f()==2,g()=logb=2,h()=()α=2,即a=4,b=,α=﹣1,∴f(x)=4x,g(x)=,h(x)=x﹣1,∵f(x1)=g(x2)=h(x3)=4,∴4x1=4,x2=4,(x3)﹣1=4,解得x1=1,x2=()4=,x3=,∴x1+x2+x3=,故答案为:12.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C.若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为________.参考答案:y2=3x

略13.为了调查本校高中男生的身高情况,在高中男生中随机抽取了80名同学作为样本,测得他们的身高后,画出频率分布直方图如下:估计该高中男生身高的平均数为_____cm,估计该高中男生身高的中位数为_____cm.(精确到小数点后两位数字)参考答案:174.75

175.31略14.已知A、B是椭圆+=1的两个顶点,C、D是椭圆上两点,且分别在AB两侧,则四边形ABCD面积最大值是.参考答案:【考点】椭圆的简单性质.【分析】四边形ABCD面积=S△ABD+S△ABC,AC是固定的直线,可判断两条平行直线与AB平行时,切点为C,D,此时h1,h2最大,面积最大时,利用导数求出D(2,)再利用对称性得出C(﹣2,),|AC|=5,最后利用点到直线的距离,求出即可.【解答】解:∵A、B是椭圆+=1的两个顶点,∴A(4,0),B(0,3),∴直线AB的方程为:3x﹣4y﹣12=0,当如图两条平行直线与AB平行时,切点为C,D,此时四边形ABCD面积最大值:S=AC(h1+h2),kAC=y=3,y′==x=2,y=,D(2,)根据对称性可知:C(﹣2,),|AC|=5h1=,h2=,S=AC(h1+h2)=××=【点评】本题考查了椭圆的几何性质,直线与椭圆的位置故关系,利用数形结合的思想判断出最值的位置,再利用导数求解,即可得需要的点,用公式求解即可.15.中,,,,则

.参考答案:略16.点P(8,1)平分双曲线x2﹣4y2=4的一条弦,则这条弦所在的直线方程是.参考答案:2x﹣y﹣15=0【考点】直线与圆锥曲线的关系;双曲线的简单性质.【分析】设弦的两端点分别为A(x1,y1),B(x2,y2),由AB的中点是P(8,1),知x1+x2=16,y1+y2=2,利用点差法能求出这条弦所在的直线方程.【解答】解:设弦的两端点分别为A(x1,y1),B(x2,y2),∵AB的中点是P(8,1),∴x1+x2=16,y1+y2=2,把A(x1,y1),B(x2,y2)代入双曲线x2﹣4y2=4,得,∴(x1+x2)(x1﹣x2)﹣4(y1﹣y2)(y1+y2)=0,∴16(x1﹣x2)﹣8(y1﹣y2)=0,∴k==2,∴这条弦所在的直线方程是2x﹣y﹣15=0.故答案为:2x﹣y﹣15=0.17.已知向量a=(﹣1,x,3),b=(2,﹣4,y),且a∥b,那么x+y的值为_________.参考答案:-4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等比数列中,(Ⅰ)试求的通项公式;(Ⅱ)若数列满足:,试求的前项和公式.参考答案:(Ⅰ);(Ⅱ).思路点拨:(Ⅰ)根据等比数列的通项公式,将问题化归为求解和即可,属简单常规题型,求解过程中须注意,与等比数列有关的消元问题通常采用乘除消元,以利简化;(Ⅱ)由(Ⅰ)易知,显然是一个等差数列和一个等比数列的积数列,是采用错位相减法求前项和的标志性特征.试题解析:(Ⅰ)根据等比数列的通项公式并结合已知条件得,所以;(Ⅱ)由,

(1)(1)×2得:

(2)(1)-(2)得:整理得:19.设a为实数,设函数的最大值为g(a).(Ⅰ)设t=,求t的取值范围,并把f(x)表示为t的函数m(t);(Ⅱ)求g(a);(Ⅲ)试求满足的所有实数a.参考答案:【考点】函数最值的应用.【分析】(I)先求定义域,再求值域.由转化.(II)求g(a)即求函数的最大值.严格按照二次函数求最值的方法进行.(III)要求满足的所有实数a,则必须应用g(a)的解析式,它是分段函数,必须分情况选择解析式进行求解.【解答】解:(I)要使有t意义,必须1+x≥0且1﹣x≥0,即﹣1≤x≤1,∴,t≥0①t的取值范围是.由①得∴m(t)=a()+t=

(II)由题意知g(a)即为函数的最大值.注意到直线是抛物线的对称轴,分以下几种情况讨论.(1)当a>0时,函数y=m(t),的图象是开口向上的抛物线的一段,由<0知m(t)在.上单调递增,∴g(a)=m(2)=a+2(2)当a=0时,m(t)=t,,∴g(a)=2.(3)当a<0时,函数y=m(t),的图象是开口向下的抛物线的一段,若,即则若,即则若,即则g(a)=m(2)=a+2综上有

(III)情形1:当a<﹣2时,此时,由,与a<﹣2矛盾.情形2:当,时,此时,解得,与矛盾.情形3:当,时,此时所以,情形4:当时,,此时,,解得矛盾.情形5:当时,,此时g(a)=a+2,由解得矛盾.情形6:当a>0时,,此时g(a)=a+2,由,由a>0得a=1.综上知,满足的所有实数a为:,或a=120.(12分)已知,,,试比较与的大小。参考答案:21.△ABC的三个顶点A(-3,0),B(2,1),C(-2,3).求:(1)BC所在直线的方程;(2)BC边上中线AD所在直线的方程;参考答案:(1);

(2)由已知得BC中点D(0,2),BC边的中线AD过点A(-3,0),D(0,2)两点,由截距式得AD所在直线方程为2x-3y+6=0;

22.直线与圆锥曲线相交时,与相交弦有关的几何图形常为研究的对象.直角坐标系,圆锥曲线的方程,为原点.(如图),且,直线过曲线的上焦点,与椭圆交于点、.(1)下面的三个问题中,直线分别满足不同的前提条件,选择其中一个研究.(三个问题赋分不同,若对多个问题解答,只对其中第一个解答过程赋分)①直线斜率为,求线段的长.②,求直线的方程.③当面积最大时,求直线的方程.我选择问题__________,研究过程如下:(2)梳理总结你的研究过程,你使用主要的知识点、研究方法和工具(公式)有:__________(至少2个关键词).(3)直线与圆锥曲线相交时,与相交弦有关的几何图形常为研究的对象.直角坐标系,圆锥曲线的方程,为原点.(如图),且,直线过曲线的上焦点,与椭圆交于点、.自构造一个几何图形,并自定一个相关的几何问题(无需解).(在图3-4中绘制出该几何图形,用正确的符号和文字描述图形的已知条件,并准确简洁叙述待研究的几何问题.无需解答,描述不清晰和不准确的不得分,绘制图像与描述不匹配的不得分)__________.参考答案:见解析.(1)①解:由题意可知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论