山东省泰安市肥城第五高级中学高二数学文摸底试卷含解析_第1页
山东省泰安市肥城第五高级中学高二数学文摸底试卷含解析_第2页
山东省泰安市肥城第五高级中学高二数学文摸底试卷含解析_第3页
山东省泰安市肥城第五高级中学高二数学文摸底试卷含解析_第4页
山东省泰安市肥城第五高级中学高二数学文摸底试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省泰安市肥城第五高级中学高二数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知x,y的取值如下表所示:x234y645如果y与x呈线性相关,且线性回归方程为,则b=()A. B. C. D.参考答案:A【考点】线性回归方程.【专题】计算题.【分析】估计条件中所给的三组数据,求出样本中心点,因为所给的回归方程只有b需要求出,利用待定系数法求出b的值,得到结果.【解答】解:∵线性回归方程为,又∵线性回归方程过样本中心点,,∴回归方程过点(3,5)∴5=3b+,∴b=﹣故选A.【点评】本题考查线性回归方程,考查样本中心点满足回归方程,考查待定系数法求字母系数,是一个基础题,这种题目一旦出现是一个必得分题目.2.在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F//平面D1AE,则A1F与平面BCC1B1所成角的正切值构成的集合是

(

)参考答案:D3.曲线x2+y2﹣6x=0(y>0)与直线y=k(x+2)有公共点的充要条件是()A. B. C. D.参考答案:C【考点】直线与圆锥曲线的关系;必要条件、充分条件与充要条件的判断.【专题】计算题;直线与圆.【分析】曲线x2+y2﹣6x=0(y>0)是圆心在(3,0),半径为3的半圆,它与直线y=k(x+2)有公共点的充要条件是圆心(3,0)到直线y=k(x+2)的距离d≤3,且k>0,由此能求出结果.【解答】解:∵曲线x2+y2﹣6x=0(y>0),∴(x﹣3)2+y2=9(y>0)为圆心在(3,0),半径为3的半圆,它与直线y=k(x+2)有公共点的充要条件是圆心(3,0)到直线y=k(x+2)的距离d≤3,且k>0,∴,且k>0,解得0<k≤.故选C.【点评】本题考查直线与圆锥曲线的位置关系的应用,解题时要认真审题,注意点到直线的距离公式的灵活运用.4..设,是两条不同的直线,是一个平面,则下列命题正确的是()A.若,,则B.若,,则C.若,,则D.若,,则参考答案:B略5.设的最小值是(

A.2

B.

C.

D.参考答案:C6.下列命题错误的是()A.命题“若m>0,则方程x2+x﹣m=0有实数根”的逆否命题为:“若方程x2+x﹣m=0无实数根,则m≤0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R均有x2+x+1≥0D.若p∧q为假命题,则p,q均为假命题参考答案:D【考点】命题的真假判断与应用.【专题】综合题;简易逻辑.【分析】A,写出命题“若p,则q”的逆否命题“若¬q,则¬p”,判定命题是否正确;B,x=1时,x2﹣3x+2=0是否成立;x2﹣3x+2=0时,x=1是否成立,判定命题是否正确;C,写出命题p的否定¬p,判定命题是否正确;D,当p∧q为假命题时,p与q的真假关系,判定命题是否正确.【解答】解:对于A,命题“若m>0,则方程x2+x﹣m=0有实数根”的逆否命题是:“若方程x2+x﹣m=0无实数根,则m≤0”,命题正确;对于B,x=1时,x2﹣3x+2=0;x2﹣3x+2=0时,x=1或2,∴x=1是“x2﹣3x+2=0”的充分不必要条件,命题正确;对于C,命题p:?x∈R,使得x2+x+1<0,的否定是¬p:?x∈R,x2+x+1≥0,∴命题正确;对于D,若p∧q为假命题,则p为假命题,q为真命题,或p为真命题,q为假命题,或p,q均为假命题,∴命题错误.故选:D.【点评】本题通过命题真假的判定,考查了简易逻辑的应用问题,解题时应对每一个命题进行认真分析,从而得出正确的答案,是基础题.7.已知实数,则下列不等式中恒成立的一个是(

)A.

B.C.

D.参考答案:D略8.某厂有许多形状为直角梯形的铁皮边角料,如图,上底边长为8,下底边长为24,高为20,为降低消耗,开源节流,现在从这此边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形面积最大值为

()A.190 B.180 C.170 D.160参考答案:B9.已知椭圆C:(a>b>0)的左焦点为,与过原点的直线相交于两点,连接.若,则的离心率为().A.

B.

C.

D.

参考答案:B10.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种 B.24种 C.36种 D.72种参考答案:C【考点】C9:相互独立事件的概率乘法公式.【分析】把甲、乙两名员工看做一个整体,再把这4个人分成3部分,每部分至少一人,共有种方法,再把这3部分人分到3个为车间,有种方法,根据分步计数原理,求得不同分法的种数.【解答】解:把甲、乙两名员工看做一个整体,5个人变成了4个,再把这4个人分成3部分,每部分至少一人,共有种方法,再把这3部分人分到3个为车间,有种方法,根据分步计数原理,不同分法的种数为?=36,故选:C.【点评】本题考查的是分类计数问题问题,把计数问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.i是虚数单位,则等于.参考答案:【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:,则=.故答案为:.12.

有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如右图所示),,则这块菜地的面积为_____________。参考答案:略13.随机向边长为2的正方形ABCD中投一点P,则点P与A的距离不小于1且使为锐角的概率是__________________.参考答案:=14.一个正三棱柱的正视图、俯视图如图所示,则该三棱柱的侧视图的面积为

.参考答案:8

【考点】由三视图求面积、体积.【分析】由正三棱柱的正视图、俯视图得到该三棱柱的侧视图是边长为4的等边三角形,由此能求出该三棱柱的侧视图的面积.【解答】解:由正三棱柱的正视图、俯视图得到该三棱柱的侧视图是边长为4的等边三角形,∴由三视图可知,该正三棱柱的底边三角形的高为:=2,底面边长为:4,∴侧视图三角形的高为:4,该三棱柱的侧视图的面积为S=2×4=8.故答案为:8.【点评】本题考查三棱柱的侧视图的面积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.15.已知函数f(x)=-x2+ax-b,若a,b都是从区间[0,4]任取的一个数,则f(1)>0成立的概率是.参考答案:16.执行右边的程序框图,若p=0.8,则输出的n=________.参考答案:略17.已知过点恰能作曲线的两条切线,则m的值是_____.参考答案:-3或-2设切点为(a,a3-3a).∵f(x)=x3-3x,∴f'(x)=3x2-3,∴切线的斜率k=3a2-3,由点斜式可得切线方程为y-(a3-3a)=(3a2-3)(x-a).∵切线过点A(1,m),∴m-(a3-3a)=(3a2-3)(1-a),即2a3-3a2=-3-m.∵过点A(1,m)可作曲线y=f(x)的两条切线,∴关于a的方程2a3-3a2=-3-m有两个不同的根.令g(x)=2x3-3x2,∴g'(x)=6x2-6x.令g'(x)=0,解得x=0或x=1,当x<0时,g'(x)>0,当0<x<1时,g'(x)<0,当x>1时,g'(x)>0,∴g(x)在(-∞,0)内单调递增,在(0,1)内单调递减,在(1,+∞)内单调递增,∴当x=0时,g(x)取得极大值g(0)=0,当x=1时,g(x)取得极小值g(1)=-1.关于a的方程2a3-3a2=-3-m有两个不同的根,等价于y=g(x)与y=-3-m的图象有两个不同的交点,∴-3-m=-1或-3-m=0,解得m=-3或m=-2,∴实数m的值是-3或-2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设数列{an}是无穷递缩等比数列,并且an=,n∈N。以f(x)表示这个数列的和。⑴求f(x)的解析式;⑵作函数f(x)的大致图象。参考答案:

19.已知数列{xn}的首项x1=3,通项,且x1,x4,x5成等差数列,求:(Ⅰ)p,q的值;

(Ⅱ)数列{xn}前n项和Sn的公式.参考答案:【分析】(Ⅰ)由x1=3,得2p+q=3.再由x1,x4,x5成等差数列,得3+(32+5q)=2(16p+4q).联立求得p,q的值;(Ⅱ)把(Ⅰ)中求得的p,q值代入xn,然后分组,再由等差数列与等比数列的前n项和公式求解.【解答】解:(Ⅰ)由x1=3,得2p+q=3.…(1)由x1,x4,x5成等差数列,得x1+x5=2x4,又x4=16p+4q,x5=32p+5q,∴3+(32+5q)=2(16p+4q).…(2)由(1)、(2)解得p=1,q=1;(Ⅱ)∵p=1,q=1,∴,∴=(2+22+…+2n)+(1+2+…+n)==.【点评】本题考查数列递推式,考查了数列的分组求和及等差数列与等比数列的前n项和,是中档题.20.(本小题满分12分)某高中有高级教师96人,中级教师144人,初级教师48人,为了进一步推进高中课程改革,邀请甲、乙、丙、丁四位专家到校指导。学校计划从所有教师中采用分层抽样办法选取6名教师分别与专家一对一交流,选出的6名教师再由专家随机抽取教师进行教学调研。(1)求应从高级教师、中级教师、初级教师中分别抽取几人;(2)若甲专家选取了两名教师,这两名教师分别是高级教师和中级教师的概率;(3)若每位专家只抽一名教师,每位教师只与其中一位专家交流,求高级教师恰有一人被抽到的概率。参考答案:(1)从高级教师、中级教师、初级教师中分别抽数目之比为:96:144:48=2:3:1得:从高级教师、中级教师、初级教师中分别抽数目分别为2,3,1…………2分.(2)设抽取的6人中高级教师为,中级教师为,初级教师为;则甲抽取2两名教师所有可能的结果为:,,,,,,,,,,,,,共种;其中甲抽取到一名高级教师和一名中级教师结果为:,,,,共6种所以甲抽取到一名高级教师和一名中级教师的概率为(3)抽取4名教师所有可能的结果为,,,,,其中高级教师恰有一人被抽到的结果有8种,则高级教师恰有一人被抽到的概率是21.已知函数f(x)=f′(1)ex﹣1﹣f(0)x+x2,其中e是自然对数的底数,f′(x)为f(x)的导函数.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若函数g(x)=x2+a与函数f(x)的图象在区间[﹣1,2]上恰有两个不同的交点,求实数a的取值范围.参考答案:解:(Ⅰ)由已知得,令,得,即.又,所以.从而.(Ⅱ)由得.令,则.由得.所以当时,;当时,.∴在(-1,0)上单调递减,在(0,2)上单调递增.又,,且.∴两个图像恰有两个不同的交点时,实数的取值范围是.略22.设有关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]上任取的一个数,求上述方程有实根的概率.参考答案:(1);(2)设事件A为“方程x2+2ax+b2=0有实根”.当a≥0,b≥0时,方程x2+2ax+b2=0有实根当且仅当a≥b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论