




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省丽水市龙泉第一高级中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某市环保局举办“六·五”世界环境日宣传活动,进行现场抽奖.抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“环保会徽”或“绿色环保标志”图案.参加者每次从盒中抽取卡片两张,若抽到两张都是“绿色环保标志”卡即可获奖.已知从盒中抽两张都不是“绿色环保标志”卡的概率是.现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一人再抽,用表示获奖的人数,那么(
)A. B. C. D.参考答案:A【分析】.设盒中装有10张大小相同精美卡片,其中印有“环保会徽”的有张,“绿色环保标志”图案的有张,根据,解得,得到参加者每次从盒中抽取卡片两张获奖的概率,再根据服从二项分布,利用公式求解.【详解】.设盒中装有10张大小相同的精美卡片,其中印有“环保会徽”的有张,“绿色环保标志”图案的有张,由题意得,解得,所以参加者每次从盒中抽取卡片两张,获奖概率,所以现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一人再抽,用表示获奖的人数,则,所以.故选:A【点睛】本题主要考查二项分布的期望和方差,还考查了运算求解的能力,属于中档题.2.等比数列{an}的公比为q,a1,a2,成等差数列,则q值为()A.2﹣ B.2+ C.2﹣或2+ D.1或参考答案:C【考点】等差数列与等比数列的综合.【分析】运用等差数列的中项的性质和等比数列的通项公式,解方程即可得到所求公比的值.【解答】解:等比数列{an}的公比为q,成等差数列,可得2a2=a1+a3,即有2a1q=a1+a1q2,化为q2﹣4q+2=0,解得q=2±,故选:C.3.设a>b>c,n∈N,且+≥恒成立,则n的最大值为(
)(A)2
(B)3
(C)4
(D)5参考答案:C4.若关于x的不等式在区间[1,4]内有解,则实数a的取值范围是(
)A.(-∞,-2] B.[-2,+∞)
C.[-6,+∞) D.(-∞,-6]参考答案:A不等式在区间内有解等价于,令,,所以,所以.故选A.5.设函数是奇函数,定义域为R,且满足.当时,,则(
)A. B. C. D.参考答案:A【分析】利用条件推得函数的周期为2,再利用奇偶性得解【详解】,故函数的周期,故选:A【点睛】本题考查函数奇偶性及周期性综合运用,熟记性质,准确计算是关键,是基础题6.当为任意实数时,直线恒过定点P,则过点P的抛物线的标准方程是(
)
A.或
B.或
C.或
D.或参考答案:C略7.下列命题中,a、b、c表示不同的直线,表示不同的平面,其真命题有(
)①若,则
②若,则
③a是的斜线,b是a在上的射影,,,则④若则
A.1个
B.2个
C.3个
D.4个参考答案:B略8.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的图象可能是(
)参考答案:B略9.若双曲线﹣=1的焦点为F1(﹣5,0),F2(5,0),则双曲线的渐近线方程为()A.3x±4y=0 B.4x±3y=0 C.4x±5y=0 D.5x±4y=0参考答案:B【考点】双曲线的简单性质.【分析】依题意,9+b2=25,b>0,从而可求得b,于是可求该双曲线的渐近线方程.【解答】解:∵双曲线﹣=1(b>0)的焦点为F1(﹣5,0),F2(5,0),∴9+b2=25,又b>0,∴b=4,∴该双曲线的渐近线方程为y=±x,整理得:4x±3y=0.故选:B.10.下列程序若输出的结果为4,则输入的x值可能是(
)INPUT
“x=”;xy=x^2+2*x+1PRINT
yENDA.
1
B.—3
C.—1
D
1或—3.参考答案:D由x2+2x+1=4得,x=1或x=-3.二、填空题:本大题共7小题,每小题4分,共28分11.动点P到点(3,0)的距离比它到直线x=﹣2的距离大1,则点P的轨迹方程为.参考答案:y2=12x【考点】抛物线的标准方程.【分析】根据题意,得到点P到点(3,0)的距离等于它到直线x=﹣3的距离,由抛物线的定义可得P的轨迹是以(3,0)为焦点、x=﹣3为准线的抛物线,由抛物线的标准方程与基本概念,即可算出点P的轨迹方程.【解答】解:∵动点P到点(3,0)的距离比它到直线x=﹣2的距离大1,∴将直线x=﹣2向左平移1个单位,得到直线x=﹣3,可得点P到点(3,0)的距离等于它到直线x=﹣3的距离.因此,点P的轨迹是以(3,0)为焦点、x=﹣3为准线的抛物线,设抛物线的方程为y2=2px(p>0),可得=3,得2p=12∴抛物线的方程为y2=12x,即为点P的轨迹方程.故答案为:y2=12x12.若函数的定义域为R,则实数的取值范围是
.参考答案:(e2,+∞)13.写出命题“若,则或”的否命题为
.参考答案:若,则且14.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3
的长方体框架,一个建筑工人欲从
A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为______________.参考答案:?【分析】先求出最近路线的所有走法共有种,再求出不连续向上攀登的次数,然后可得概率.【详解】最近的行走路线就是不走回头路,不重复,所以共有种,向上攀登共需要3步,向右向前共需要4步,因为不连续向上攀登,所以向上攀登的3步,要进行插空,共有种,故所求概率为.【点睛】本题主要考查古典概率的求解,明确事件包含的基本事件种数是求解关键,侧重考查数学建模和数学运算的核心素养.15.点P在正方体的面对角线上运动,则下列四个命题:①三棱锥的体积不变;②∥平面;③;④平面平面.其中正确的命题序号是
.参考答案:(1)(2)(416.已知函数在区间()上存在零点,则n=
▲
.参考答案:3根据题意,可以判断出是定义在上的增函数,根据函数零点存在性定理,可以得到其若在区间()上存在零点,则有,经验证,,,所以函数在上存在零点,故.
17.在同一直角坐标系中,表示直线与正确的是()
A.B.C.
D.参考答案:C略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线L经过点P(1,1),倾斜角,(1)写出直线L的参数方程。(2)设l与圆相交与两点A、B,求点P到A、B两点的距离之积。参考答案:略19.已知(1,5),,(1)求的值;(2)当为何值时,与平行?平行时它们是同向还是反向?参考答案:略20.(12分)设A(x1,y1),B(x2,y2)是椭圆上的两点,已知O为坐标原点,椭圆的离心率,短轴长为2,且,若.(Ⅰ)求椭圆的方程;(Ⅱ)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求△AOB的面积.参考答案:(1);(2)1.(1)∵短轴长为2b=2,∴b=1又∵椭圆的离心率∴解得a=2,所以椭圆的方程为(5分)(2)由(1)得c==,可得F(0,)由题意知直线AB的斜率存在,设直线AB的方程为,与椭圆方程联解得消去y,得∴(7分)∵,∴==,解之得(10分)∴,由此可得|x1﹣x2|==∴△AOB的面积为.(13分)21.如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(1)证明:平面PAC⊥平面PBD;(2)若AB=,∠APB=∠ADB=60°,求四棱锥P-ABCD的体积.参考答案:(1)证明:因为PH是四棱锥P-ABCD的高,所以AC⊥PH.又AC⊥BD,PH,BD都在平面PBD内,且PH∩BD=H,所以AC⊥平面PBD,故平面PAC⊥平面PBD.(2)解:因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=,所以HA=HB=.因为∠APB=∠ADB=60°,所以PA=PB=,HD=HC=1.可得PH=,等腰梯形ABCD的面积为S=AC×BD=2+.所以四棱锥的体积为V=×(2+)×=.22.已知椭圆+=1和点P(4,2),直线l经过点P且与椭圆交于A、B两点.(1)当直线l的斜率为时,求线段AB的长度;(2)当P点恰好为线段AB的中点时,求l的方程.
参考答案:(1)由已知可得直线l的方程为y-2=(x-4),即y=x.由可得x2-18=0,若设A(x1,y1),B(x2,y2).则x1+x2=0,x1x2=-18.于是|AB|====.所以线段AB的长度为.(2)法一:设l的斜率为k,则其方程为y-2=k(x-4).联立消去y得(1+4k2)x2-(32k2-16k)x+(64k2-64k-20)=0.若设A(x1,y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外国教育史试题及答案
- 甜心小米测试题及答案
- 土木目标控制试题及答案
- 2025年域名更新注册管理协议
- 2025年建筑安装劳务分包协议样本
- 2025年夫妻债务承担协议标准文本
- 综合管线与设备安装在施工中的协调与管理
- 教联体发展中的师生互动模式创新
- 推动健美操创新的背景意义及必要性
- 区域影视产业链的优化与产业升级路径
- 第16课《学先锋 做先锋》(第二课时)教案教学设计 2025道德与法治一年级下册
- 食管狭窄试题答案及解析
- 上海地理会考试卷及答案
- 《拼多多营销策略》课件
- 【北京市人社局】2025年北京市人力资源市场薪酬数据报告(一季度)
- 矿山出售合同协议
- 医务人员职业道德规范
- 医院5s管理制度
- 婴儿牛奶蛋白过敏预防策略(2025版)解读
- 2025年济南市中区九年级中考英语一模考试试题(含答案)
- 法学专科毕业论文-浅论网络虚拟财产的法律保护
评论
0/150
提交评论