湖南省常德市澧县涔南乡中学高二数学文下学期期末试卷含解析_第1页
湖南省常德市澧县涔南乡中学高二数学文下学期期末试卷含解析_第2页
湖南省常德市澧县涔南乡中学高二数学文下学期期末试卷含解析_第3页
湖南省常德市澧县涔南乡中学高二数学文下学期期末试卷含解析_第4页
湖南省常德市澧县涔南乡中学高二数学文下学期期末试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省常德市澧县涔南乡中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.经过点且与双曲线有共同渐近线的双曲线方程为(

) A. B. C. D.参考答案:A略2.已知点为圆上的点,直线为,为,到的距离分别为,那么的最小值为A.

B.

C.

D.参考答案:C3.正三棱锥P—ABC中,∠APB=∠BPC=∠CPA=90°,PA=PB=PC=a,AB的中点M,一小蜜蜂沿锥体侧面由M爬到C点,最短路程是(

)A.

B.

C.

D.参考答案:A4.记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M中的元素按从大到小排列,则第2013个数是() A. B. C. D. 参考答案:A【考点】进行简单的合情推理. 【专题】规律型;探究型. 【分析】将M中的元素按从大到小排列,求第2013个数所对应的ai,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案. 【解答】因为=(a1×103+a2×102+a3×10+a4), 括号内表示的10进制数,其最大值为9999; 从大到小排列,第2013个数为 9999﹣2013+1=7987 所以a1=7,a2=9,a3=8,a4=7 则第2013个数是 故选A. 【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可. 5.在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是(

)A.①③ B.②④ C.①④ D.②③参考答案:B【分析】说法①:可以根据线面平行的判定理判断出本说法是否正确;说法②:根据线面垂直的性质和面面平行的判定定理可以判断出本说法是否正确;说法③:当与相交时,是否在平面内有不共线的三点到平面的距离相等,进行判断;说法④:可以通过反证法进行判断.【详解】①平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知②正确;③若平面内有不共线的三点到平面的距离相等,则与可能平行,也可能相交,不正确;易知④正确.故选B.【点睛】本题考查了线线位置关系、面面位置关系的判断,分类讨论是解题的关键,反证法是经常用到的方程.6.已知ABC的内角A、B、C所对的边分别为、、,若B=2A,=1,b=,则=()A.2

B.2 C.

D.1参考答案:B.在ABC中,应用正弦定理得,,所以,所以,,所以,故应选B.7.如图,F1、F2分别为椭圆的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值为(

)

A.

B.

C.12

D.1参考答案:B8.已知f(x)=sin2x+cos2x(x∈R),函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A. B. C. D.参考答案:D【考点】H6:正弦函数的对称性;H5:正弦函数的单调性.【分析】化简函数,利用函数的图象关于直线x=0对称,函数为偶函数,可得结论.【解答】解:因为,函数的图象关于直线x=0对称,函数为偶函数,∴,故选D.9.如图,一个棱锥的正视图和侧视图都是边长为2的等边三角形,若该棱锥的体积是,则其底面周长为(

)A.

B.

C.

D.参考答案:C10.设,则关于x、y的方程(1-k)x2+y2=k2-1所表示的曲线是

()A.实轴在x轴上的双曲线

B.实轴在y轴上的双曲线C.长轴在x轴上的椭圆

D.长轴在y轴上的椭圆参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.设正数满足,则___________.参考答案:考点:均值定理的应用试题解析:由得:即,即因为所以时取等号。所以故答案为:12.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为.参考答案:3【考点】等差数列的前n项和.【分析】由等差数列有10项,得到奇数项有5个,偶数项有5个,然后利用偶数项减去奇数项,即第2项减第1项,第4项减去第三项,依此类推,因为第2项减第1项等于公差d,所以偶数项减去奇数项等于5d,由奇数项之和为15,偶数项之和为30,列出关于d的方程,求出方程的解即可得到d的值.【解答】解:因为30﹣15=(a2﹣a1)+(a4﹣a3)+…+(a10﹣a9)=5d,所以d=3.故答案为:313.已知=2,=3,=4,…若=6,(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t=

.参考答案:41【考点】类比推理.【分析】观察所给的等式,等号右边是,,…第n个应该是,左边的式子,写出结果.【解答】解:观察下列等式=2,=3,=4,…照此规律,第5个等式中:a=6,t=a2﹣1=35a+t=41.故答案为:41.14.在极坐标系中,曲线和的方程分别为和,以极点为平面直角坐标系的原点,极轴为x轴正半轴,建立平面直角坐标系,则曲线和交点的直角坐标为_____________参考答案:(1,2)15.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是

.参考答案:(﹣7,3)【考点】3F:函数单调性的性质;74:一元二次不等式的解法.【分析】由偶函数性质得:f(|x+2|)=f(x+2),则f(x+2)<5可变为f(|x+2|)<5,代入已知表达式可表示出不等式,先解出|x+2|的范围,再求x范围即可.【解答】解:因为f(x)为偶函数,所以f(|x+2|)=f(x+2),则f(x+2)<5可化为f(|x+2|)<5,即|x+2|2﹣4|x+2|<5,(|x+2|+1)(|x+2|﹣5)<0,所以|x+2|<5,解得﹣7<x<3,所以不等式f(x+2)<5的解集是(﹣7,3).故答案为:(﹣7,3).16.直线与直线的夹角是___________________.参考答案:17.已知F是椭圆C:的右焦点,P是C上一点,,当周长最小时,其面积为

.参考答案:4

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(文科学生做)设函数.(1)用反证法证明:函数不可能为偶函数;(2)求证:函数在上单调递减的充要条件是.参考答案:(1)假设函数是偶函数,

…………2分则,即,解得,

…………4分这与矛盾,所以函数不可能是偶函数.

…………6分(2)因为,所以.

…………8分①充分性:当时,,所以函数在单调递减;

…………10分②必要性:当函数在单调递减时,有,即,又,所以.

…………13分综合①②知,原命题成立.

…………14分(说明:用函数单调性的定义证明的,类似给分;用反比例函数图象说理的,适当扣分)19.设f(x)=,若0<a<1,试求:(1)f(a)+f(1-a)的值;(2)f()+f()+f()+…+f()的值..参考答案:(1)f(a)+f(1-a)=+=+=+=+==1.(2)f()+f()+f()+…+f()=[f()+f()]+[f()+f()]+…+[f()+f()]=500×1=500.20.(本小题满分12分)在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.(1)求数列{an}的通项公式;(2)设bn=log2an,求数列{bn}的前n项和Sn;(3)是否存在k∈N*,使得对任意n∈N*恒成立,若存在,求出k的最小值,若不存在,请说明理由.参考答案:(1)∵a1a5+2a3a5+a2a8=25,

∴a+2a3a5+a=25,∴(a3+a5)2=25,又an>0,∴a3+a5=5,又a3与a5的等比中项为2,∴a3a5=4,而q∈(0,1),

∴a3>a5,∴a3=4,a5=1,∴q=,a1=16,21.如图1,已知四边形BCDE为直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A为BE的中点,将△EDA沿AD折到△PDA位置(如图2),使得PA⊥平面ABCD,连接PC、PB,构成一个四棱锥P﹣ABCD.(Ⅰ)求证AD⊥PB;(Ⅱ)求二面角B﹣PC﹣D的大小.参考答案:【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)推导出ABCD为平行四边形,AD∥BC,AD⊥BE,AD⊥AB,AD⊥PA,从而AD⊥平面PAB,由此能证明AD⊥PB.(Ⅱ)以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣PC﹣D的大小.【解答】(Ⅰ)证明:在图1中,∵AB∥CD,AB=CD,∴ABCD为平行四边形,∴AD∥BC,∵∠B=90°,∴AD⊥BE,当△EDA沿AD折起时,AD⊥AB,AD⊥AE,即AD⊥AB,AD⊥PA,又AB∩PA=A,∴AD⊥平面PAB,又∵PB?平面PAB,∴AD⊥PB.(Ⅱ)解:①以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),=(1,1,﹣1),=(0,1,0),=(1,0,0),设平面PBC的法向量为=(x,y,z),则,取z=1,得=(1,0,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(0,1,1),设二面角B﹣PC﹣D的大小为θ,则cosθ=﹣=﹣,∴θ=120°.∴二面角B﹣PC﹣D的大小为120°.22.“蛟龙号”从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论