版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市永康石柱中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如果函数的图象如右图,那么导函数的图象可能是(
)参考答案:A略2.已知函数f(x)的部分图象如图,则f(x)的解析式可能为()A.f(x)=xsinx B.f(x)=xcosx﹣sinxC.f(x)=xcosx D.f(x)=xcosx+sinx参考答案:B【考点】3O:函数的图象.【分析】利用函数的图象的奇偶性排除选项,通过特殊点的函数值的判断即可.【解答】解:由题意可知函数是奇函数,可知A不正确;f(x)=xcosx,f(x)=xcosx+sinx,当x∈(0,)时,两个函数值都是正数,与函数的图象不符,故选:B.【点评】本题考查函数的图象与函数的解析式的对应关系,是基础题.3.如图,当取三个不同的值 的三种正态曲线 的图像,那么的大小关系是( )
0< A.
B.
C.
参考答案:D4.下面几种推理是合情推理的是(1)由正三角形的性质,推测正四面体的性质;(2)由平行四边形、梯形内角和是,归纳出所有四边形的内角和都是;(3)某次考试金卫同学成绩是90分,由此推出全班同学成绩都是90分;(4)三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是A.(1)(2)
B.(1)(3)
C.(1)(2)(4)
D.(2)(4)参考答案:C略5.已知△ABC的周长为20,且顶点B(0,-4),C(0,4),则顶点A的轨迹方程是(
)A.(x≠0)
B.(x≠0)C.(x≠0)
D.(x≠0)参考答案:B6.五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为()A. B. C. D.参考答案:A【考点】古典概型及其概率计算公式.【分析】五位同学站成一排照相留念,且甲乙相邻,先求出基本事件种数,再求出甲丙也相邻包含的基本事件个数,由此能求出甲丙也相邻的概率.【解答】解:五位同学站成一排照相留念,且甲乙相邻,基本事件种数n==48,其中甲丙也相邻包含的基本事件个数m==12,∴甲丙也相邻的概率p=.故选:A.7.已知直线是曲线的一条切线,则实数m的值为(
)A. B. C. D.参考答案:D【分析】根据题意,设直线与曲线的切点坐标为(n,),求出y=xex的导数,由导数的几何意义可得y′|x=n=0,解得n的值,将n的值代入曲线的方程,计算可得答案.【详解】根据题意,直线y是曲线y=xex的一条切线,设切点坐标为(n,),对于y=xex,其导数y′=(xex)′=ex+xex,则有y′|x=n=en+nen=0,解可得n=﹣1,此时有nen,则m=e.故选:D.【点睛】本题考查利用函数的导数计算函数的切线方程,关键是掌握导数的几何意义.8.设为直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则参考答案:B略9.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是(
) A.三棱锥
B.球
C.圆柱
D.正方体参考答案:C略10.P=+,Q=+(a>0),则P,Q的大小关系是(
)A.P>Q
B.P=QC.P<Q
D.由a的取值确定参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.若,则=
.参考答案:12.若z1=1﹣3i,z2=6﹣8i,且z=z1z2,则z的值为.参考答案:﹣18﹣26i【考点】复数代数形式的乘除运算.【分析】利用复数的乘法的运算法则化简求解即可.【解答】解:z1=1﹣3i,z2=6﹣8i,z=z1z2=(1﹣3i)(6﹣8i)=6﹣8i﹣18i+24i2=﹣18﹣26i.故答案为:﹣18﹣26i.13.如图,已知边长为2的正△,顶点在平面内,顶点在平面外的同一侧,点分别为在平面上的投影,设,直线与平面所成的角为.若△是以为直角的直角三角形,则的范围为_______.参考答案:14.设函数y=lg(﹣x2+4x﹣3)的定义域为A,函数y=,x∈(0,m)的值域为B.(1)当m=2时,求A∩B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断;对数函数的定义域.【专题】简易逻辑.【分析】(1)先求出A=(1,3),再求出B=(,2),取交集即可;(2)根据:“x∈A”是“x∈B”的必要不充分条件,得不等式解出即可.【解答】解:(1)由﹣x2+4x﹣3>0,解得:1<x<3,∴A=(1,3),又函数y=在区间(0,m)上单调递减,∴y∈(,2),即B=(,2),当m=2时,B=(,2),∴A∩B=(1,2);(2)首先要求m>0,而“x∈A”是“x∈B”的必要不充分条件,∴B?A,即(,2)?(1,3),从而≥1,解得:0<m≤1.【点评】本题考查了充分必要条件,是一道基础题.15.若则下列不等式:①②③中,正确的不等式有(A)1个
(B)2个
(C)3个
(D)0个参考答案:A16.设复数z实部为正数,满足|z|=5且(3+4i)z是纯虚数,则=
参考答案:
4-3i
略17.NBA某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右图所示:则中位数与众数分别为
▲
和
▲
.
参考答案:23,23略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆x2+y2-2x-4y+m=0.(14分)(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.参考答案:(1)方程x2+y2-2x-4y+m=0,可化为(x-1)2+(y-2)2=5-m,∵此方程表示圆,∴5-m>0,即m<5.(2)消去x得(4-2y)2+y2-2×(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(x1,y1),N(x2,y2),则由OM⊥ON得y1y2+x1x2=0即y1y2+(4-2y1)(4-2y2)=0,∴16-8(y1+y2)+5y1y2=0.将①②两式代入上式得,解之得m=.(3)由m=,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=,y2=.∴x1=4-2y1=-,x2=4-2y2=.∴M,N,∴MN的中点C的坐标为.又|∴所求圆的半径为.∴所求圆的方程为.19.(本小题满分12分)已知双曲线的左、右顶点分别为A1、A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.求直线A1P与A2Q交点的轨迹E的方程.参考答案:20.在直角坐标系xoy中,曲线C1的参数方程为,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.参考答案:【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(I)利用cos2α+sin2α=1消参数得到C1的普通方程,将极坐标方程左侧展开即可得到直角坐标方程;(II)利用C1的参数方程求出P到C2的距离,根据三角函数的性质求出距离的最小值.【解答】解:(I)由得cosα=,sinα=y.∴曲线C1的普通方程是.∵,∴ρsinθ+ρcosθ=8.即x+y﹣8=0.∴曲线C2的直角坐标方程时x+y﹣8=0.(II)设P点坐标(,sinα),∴P到直线C2的距离d==,∴当sin(α+)=1时,d取得最小值=3.21.(本小题满分12分)函数,其中为常数,且函数和的图象在其与坐标轴的交点处的切线互相平行,求此时平行线的距离。参考答案:a=1,y=x+1与y=x-1之间距离为略22.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1﹣x).(1)求f(x)及g(x)的解析式;(2)求g(x)的值域.参考答案:【考点】函数奇偶性的性质;函数的值域;函数解析式的求解及常用方法.【分析】(1)由题意和函数奇偶性得:f(﹣x)=﹣f(x),g(﹣x)=g(x),令x取﹣x代入f(x)+g(x)=2log2(1﹣x)化简后,联立原方程求出f(x)和g(x),由对数的运算化简,由对数函数的性质求出函数的定义域;(2)设t=1﹣x2,由﹣1<x<1得0<t≤1,利用对数函数的性质求出g(x)的值域.【解答】解:(1)因为f(x)是偶函数,g(x)是奇函数,所以f(﹣x)=﹣f(x),g(﹣x)=g(x),令x取﹣x代入f(x)+g(x)=2log2(1﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2134电大成本会计历年真题及答案
- 彩妆知识培训课件图片
- 2024食品配料研发实验室员工保密条款合同范本3篇
- 2025年度企业IT运维外包服务及数据备份恢复合同3篇
- 福建省南平市岚下中学2020年高三英语期末试卷含解析
- 2024瓷砖经销商墙地砖销售合同
- 2024年小班区域教案
- 2025年度交通安全责任协议范本3篇
- 2024铝材行业信息化建设与数据共享合同3篇
- 2024高层次人才聘用协议书
- 防范非法集资宣传打击非法集资远离金融诈骗课件
- GB/T 10781.4-2024白酒质量要求第4部分:酱香型白酒
- 酒店前台员工规章制度
- 医院食堂改进方案及措施(2篇)
- 心内科进修汇报
- 视觉传达设计教资面试
- MOOC 土地经济学-南京农业大学 中国大学慕课答案
- 代驾服务雇佣合同
- 慢性高血压并发重度子痫前期1
- 农村住房质量安全
- JTG D70-2-2014 公路隧道设计规范 第二册 交通工程与附属设施
评论
0/150
提交评论