2024届山西省晋城市名校中考数学全真模拟试卷含解析_第1页
2024届山西省晋城市名校中考数学全真模拟试卷含解析_第2页
2024届山西省晋城市名校中考数学全真模拟试卷含解析_第3页
2024届山西省晋城市名校中考数学全真模拟试卷含解析_第4页
2024届山西省晋城市名校中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省晋城市名校中考数学全真模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A. B. C. D.2.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.3.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A.、 B.、 C.、 D.、4.不等式组的解集在数轴上表示正确的是()A. B.C. D.5.将不等式组的解集在数轴上表示,下列表示中正确的是()A. B. C. D.6.下列各组单项式中,不是同类项的一组是()A.和 B.和 C.和 D.和37.下列计算正确的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a68.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有()A.①④ B.①③ C.①②③ D.②③④9.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分10.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>511.若式子在实数范围内有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣112.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是()A. B.C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为__.14.函数中,自变量的取值范围是______.15.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.16.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.17.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.18.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再在1,2,3中选取一个适当的数代入求值.20.(6分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.21.(6分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.22.(8分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣33(1)求抛物线F的解析式;(1)如图1,直线l:y=33x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1(3)在(1)中,若m=43①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.23.(8分)如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.(1)求证:;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.24.(10分)(1)解方程:.(2)解不等式组:25.(10分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标画树状图列表,写出点M所有可能的坐标;求点在函数的图象上的概率.26.(12分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)27.(12分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】

原式各项计算得到结果,即可做出判断.【详解】A、原式=,正确;

B、原式不能合并,错误;

C、原式=,错误;

D、原式=2,错误.

故选A.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2、D【解析】

过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.3、C【解析】

根据中位数和众数的概念进行求解.【详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1.故选C.【点睛】本题考查1.中位数;2.众数,理解概念是解题关键.4、C【解析】

分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:,即.

∴在数轴上可表示为.故选B.“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6、A【解析】

如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.7、D【解析】

根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A.不是同类二次根式,不能合并,故A选项错误;B.=2≠±2,故B选项错误;C.

a6÷a2=a4≠a3,故C选项错误;D.

(−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.8、C【解析】

根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;所有点中,只有点D到A距离为2个单位,故③正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.故选:C.【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.9、D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10、B【解析】试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.11、A【解析】

直接利用二次根式有意义的条件分析得出答案.【详解】∵式子在实数范围内有意义,∴x﹣1>0,解得:x>1.故选:A.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12、D【解析】

根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-1【解析】试题分析:根据非负数的性质可得:,解得:,则ab+bc=(-11)×6+6×5=-66+30=-1.14、【解析】

根据分式有意义的条件是分母不为2;分析原函数式可得关系式x−1≠2,解得答案.【详解】根据题意得x−1≠2,解得:x≠1;故答案为:x≠1.【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为2.15、23【解析】∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,∴其概率是=.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、a≤且a≠1.【解析】

根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.17、【解析】

由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案为.【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18、10<a≤10.【解析】

根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围.【详解】∵M是AB的中点,MC=MA=5,∴△ABC为直角三角形,AB=10;∴a=AC+BC>AB=10;令AC=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的两个实根,∴△=a2-4×≥0,即a≤10.综上所述,a的取值范围是10<a≤10.故答案为10<a≤10.【点睛】本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、,当x=2时,原式=.【解析】试题分析:先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.试题解析:原式===当x=2时,原式=.20、(1)证明见解析;(1)32【解析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.试题解析:(1)证明:连接OE、EC.∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(1)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE•BA.∵AE:EB=1:1,设AE=x,则BE=1x,BA=3x.∵BC=6,∴61=1x•3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此题的关键.21、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.22、(1)y=x1+33x;(1)y1﹣y1=233π;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(13,23)、(﹣【解析】

(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【详解】(1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣33∴c=013-∴抛物线F的解析式为y=x1+33(1)将y=33x+m代入y=x1+33x,得:x解得:x1=﹣π,x1=π,∴y1=﹣133π+m,y1=∴y1﹣y1=(133π+m)﹣(﹣13(3)∵m=43∴点A的坐标为(﹣233,23∵点A′是点A关于原点O的对称点,∴点A′的坐标为(233,﹣①△AA′B为等边三角形,理由如下:∵A(﹣233,23),B(233∴AA′=83,AB=83,A′B=∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有x-2解得x=2∴点P的坐标为(13,23(ii)当AB为对角线时,有x=-2解得:x=-2∴点P的坐标为(﹣233,(iii)当AA′为对角线时,有x=-2解得:x=-2∴点P的坐标为(﹣23综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(13,23)、(﹣233【点睛】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.23、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.(2)设FM=a,则BF=3a,BM=4a.由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.24、(1)无解;(1)﹣1<x≤1.【解析】

(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,经检验x=1是增根,分式方程无解;(1),由①得:x>﹣1,由②得:x≤1,则不等式组的解集为﹣1<x≤1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25、见解析;.【解析】

(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】画树状图得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论