版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省酒泉市瓜州县重点中学2023-2024学年中考数学仿真试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的几何体的俯视图是(
)A. B. C. D.2.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣33.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.84.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为()A. B. C. D.5.以下各图中,能确定的是()A. B. C. D.6.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.25x-C.30(1+80%)x-7.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为A. B. C. D.8.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60° B.50° C.40° D.30°9.已知∠BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>10.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90° B.120° C.60° D.30°11.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤ B.①②④ C.①③④ D.①③⑤12.已知方程组,那么x+y的值()A.-1 B.1 C.0 D.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°14.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为,两侧离地面高处各有一盏灯,两灯间的水平距离为,则这个门洞的高度为_______.(精确到)15.已知,且,则的值为__________.16.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.17.若a2﹣2a﹣4=0,则5+4a﹣2a2=_____.18.如图,中,,,,,平分,与相交于点,则的长等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:类(),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:类学生有人,补全条形统计图;类学生人数占被调查总人数的%;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在中的概率.20.(6分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=时,a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=1.求AF的长.21.(6分)如图,在△ABC中,AB=AC,点,在边上,.求证:.22.(8分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB边的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠F=30°,BF=3,求弧AD的长.23.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.24.(10分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求⊙O的半径长;(2)求线段DG的长.25.(10分)抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.(1)如图1,若A(-1,0),B(3,0),①求抛物线的解析式;②P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;(2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.26.(12分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?27.(12分)如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线2、A【解析】
方程变形后,配方得到结果,即可做出判断.【详解】方程,变形得:,配方得:,即故选A.【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.3、C【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.4、B【解析】
连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.【详解】连接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),
故选B.【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.5、C【解析】
逐一对选项进行分析即可得出答案.【详解】A中,利用三角形外角的性质可知,故该选项错误;B中,不能确定的大小关系,故该选项错误;C中,因为同弧所对的圆周角相等,所以,故该选项正确;D中,两直线不平行,所以,故该选项错误.故选:C.【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.6、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,25故选A.7、B【解析】
将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.【详解】解:,①②得:,即,将代入①得:,即,将,代入得:,解得:.故选:.【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.8、D【解析】
由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故选D.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.9、C【解析】如下图,设⊙O与射线AC相切于点D,连接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,∴x的取值范围是.故选C.10、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故选C.点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.11、D【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ的面积等于∴AB=DC=8故故②错误当14<t<22时,故③正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA为直角三角形∴只有点P在DC边上时,有△BPQ与△BEA相似由已知,PQ=22﹣t∴当或时,△BPQ与△BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故⑤正确故选:D.【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.12、D【解析】
解:,①+②得:3(x+y)=15,则x+y=5,故选D二、填空题:(本大题共6个小题,每小题4分,共24分.)13、57°.【解析】
根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.14、9.1【解析】
建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标【详解】如图,以地面为x轴,门洞中点为O点,画出y轴,建立直角坐标系由题意可知各点坐标为A(-4,0)B(4,0)D(-3,4)设抛物线解析式为y=ax2+c(a≠0)把B、D两点带入解析式可得解析式为,则C(0,)所以门洞高度为m≈9.1m【点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键15、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.16、5【解析】由题意得,,.∴原式17、-3【解析】试题解析:∵即∴原式故答案为18、3【解析】
如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)5;(2)36%;(3).【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=,进行求解即可;(3)利用列举法求概率即可.试题解析:(1)E类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D类:1850×100%=36%,故答案为:36%;(3)设这5人为有以下10种情况:其中,两人都在的概率是:.20、(1)2,2;2,2;(2)+=5;(1)AF=2.【解析】试题分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b2=5c2,如图1,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考点:相似形综合题.21、见解析【解析】试题分析:证明△ABE≌△ACD即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.22、(1)见解析;(2)2π.【解析】
证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的长度=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.23、(1)见解析(2)选择摇奖【解析】试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;
(2)算出相应的平均收益,比较大小即可.试题解析:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率=;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)1;(2)【解析】(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;(2)过G作GP⊥AC,垂足为P,设GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.25、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐标代入解析式,解方程组即可得到结论;②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,从而有tan∠ACD=tan∠ECD,,即可得出AI、CI的长,进而得到.设EN=3x,则CN=4x,由tan∠CDO=tan∠EDN,得到,故设DN=x,则CD=CN-DN=3x=,解方程即可得出E的坐标,进而求出CE的直线解析式,联立解方程组即可得到结论;(2)作DI⊥x轴,垂足为I.可以证明△EBD∽△DBC,由相似三角形对应边成比例得到,即,整理得.令y=0,得:.故,从而得到.由,得到,解方程即可得到结论.详解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新建乳清浓缩蛋白项目立项申请报告
- 年产xx干衣机项目可行性研究报告(项目计划)
- 年产xxx消防水带项目可行性研究报告(创业计划)
- 联合站冬季安全生产培训
- 肝昏迷中医护理查房
- 治疗组分组介绍栏
- 一年级上册数学导学案-第一单元《数一数》(含校本作业)-苏教版
- 4.3 海水与人类 课件高一上学期 地理 湘教版(2019)必修一
- 大班社会:不要随便跟陌生人走教案
- 给主播培训的运营需要做的
- DB62∕T 4420-2021 淫羊藿栽培技术规程
- 城市旅游集散中心等级划分与评定
- 泰康之家养老社区产品标准——关键点
- 冬季行车安全教育试卷(含答案)
- 生产与仓储循环--确定控制是否得到执行穿行测试
- 剪纸艺术进校园活动简报
- 浅谈小学数学教学中如何培养学生的核心素养
- 小学入门数独100题(简单)
- 谈数学课堂中倾听教育的策略(徐艳)
- 首都经济贸易大学本科毕业论文格式模板范文
- 毛丝产生要因分析及解决方案
评论
0/150
提交评论