2023年中考数学二轮专项练习-反比例函数_第1页
2023年中考数学二轮专项练习-反比例函数_第2页
2023年中考数学二轮专项练习-反比例函数_第3页
2023年中考数学二轮专项练习-反比例函数_第4页
2023年中考数学二轮专项练习-反比例函数_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学二轮专项练习:反比例函数

—v单选题

1.已知变量y与X成反比例,当X=3时,y=-6,则该反比例函数的解析式为

()

A_18Rv-18v-2n_

A.yv-D.y--「.y——u.yv-■

2

x

2.已知反比例函数y=~l,点A(a-b,2),B(a-c,3)在这个函数图象上,下列

对于a,b,c的大小判断正确的是()

A.a<b<cB.a<c<bC.c<b<aD.b<c<

a

2

3.已知,N(久2,y2),R(%3,y3)是反比例函数y=幺土1图象上三点,

JX

若%1V%2<%3,、2<%<0<当,则下列关系式不正确的是()

A.<0B.%1%3<0C.%2X3V0D.+

%2<0

4.如图,以原点为圆心的圆与反比例函数y=*的图象交于A、B、C、D四点,已知点

A的横坐标为1,则点C的横坐标(

C.-2D.-1

5.反比例函数y="1图象上有三个点(xi,yi),(X2,y2),(X3,y3),其中xi<O<

X2<X3,则yi,ya,y.;的大小关系是()

A.yi<y2<ysB.y2<y3<yiC.yi<y3<y2D.y3<yz

<yi

6.函数y=[的图象经过点(1,-2),则函数y=kx+1的图象不经过()

A.第一象限B.第二象限C.第三象限D.第四象

7.下列图象中,能反映函数y随x增大而减小的是()

8.若y=(徵+是反比例函数,则m等于()

A.1B.-1C.±1D.0

9.如图,反比例函数y=[的图象经过二次函数y=ax?+bx图象的顶点(-1,m)

(m>0),则有()

A.a=b+2kB.a=b-2kC.k<b<0D.a<k<

0

io.如图,两个反比例函数y=1和y=-(的图象分别是h和12.设点P在h上,

PC±x轴,垂足为C,交L于点A,PD±y轴,垂足为D,交b于点B,则三角形

PAB的面积为()

11.已知y是关于x的反比例函数,且当x=时,y=2。则y关于x的函数表达式

为()

11

A.y=-xB.y=--C.y=--xD.y=

1

12.如图,A,B是反比例函数y=[(k>0,%>0)图象上的两点,过点A,B分别

作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为

5,CD=3AC,cos乙BED=|,贝!Jk的值为()

A,

A.5B.4C.3D.竽

二、填空题

13.反比例函数y=《,当1WXW3时,函数y的最大值和最小值之差为4,则k

一•

14.一次函数yi=-x+6与反比例函数y2=|(x>0)的图象如图所示当y”2时,自变量x

的取值范围是。

24

15.如图:M为反比例函数y=[图象上一点,MA_Ly轴于A,SAMAO=2时,

k=

16.若点A(-4,yfB{-2.PXC(2,y3)都在反比例函数y=-^的图象

上,则八》、”的大小关系是.

17.已知点(m-1,yi),(m-3,y2)是反比例函数y=y(m<0)图象上的两点,

则y>Y2(填“>”或“="或“<”)

18.如图,四边形ABCD的面积为6,CD在x轴上,且AB//CD倦=|,反比例

函数y=](kH0)的图象经过四边形的顶点A,则k的值为.

三、综合题

19.如图,一次函数y=kiX+b的图象与x轴,y轴分别交于A,B两点,与反比例

函数y=§的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.

(1)求一次函数y=k1X+b与反比例函数y=§的解析式;

(2)求△COD的面积;

(3)直接写出当x取何值时,klx+b<^.

20.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成

反比例函数关系,其图象如图所示.

(1)求V与t之间的函数表达式;

(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?

(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排

完?

21.在某一电路中,保持电压U(V)不变,电流1(A)是电阻R(0)的反比例函数,

如图是某电路电流、电阻的关系图,其图象经过点4(4,9).

0R

(1)求/与R的函数表达式;

(2)当电阻为3。时,求电流大小.

22.在平面直角坐标系中,反比例函数y=[(k>0,x>0)图象上的两点(n,3n1

(n+1,2n).

(1)求n的值;

(2)如图,直线1为正比例函数y=x的图象,点A在反比例函数y=(

(k>0,x>0)图象上,过点A作ABL于点B,过点B作BCLx轴于点C,过点A作

AD±BC于点D,记4△BOC的面积为S.,△ABD的面积为S2,求S「S?的值.

23.【问题】小明在学习时遇到这样一个问题:求不等式x3+3xJx-3>0的解集。他经历

了如下思考过程:

(1)【回顾】

如图1,在平面直角坐标系xOy中,直线y产ax+b与双曲线y2=1交于A(1,3)

和B(-3,),则不等式ax+b>[的解集是;

(2)【探究】

将不等式x3+3x2-x-3>0按条件进行转化:

当X=()时,原不等式不成立;

当x>0时,不等式两边同除以X并移项转化为x2+3x-l>|;

当x<0时,不等式两边同除以x并移项转化为x2+3x-l<1;

构造函数,画出图象

设y3=x?+3x-l,y4=:,在同一坐标系中分别画出这两个函数的图象。

双曲线Y4=|如图2所示,请在此坐标系中画出抛物线y3=x?+3x-l;(不用列表)

(3)确定两个函数图象公共点的横坐标

观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所

有X的值为;

(4)【解决】借助图象,写出解集

结合,,探究,,中的讨论,观察两个函数的图象可知:不等式x3+3x2-x-3>0的解集

为»

24.如图,已知点A(a,3)是一次函数yi=x+b图象与反比例函数y24图象的一个交

点.

(1)求一次函数的解析式;

(2)在y轴的右侧,当y।>y2时,直接写出x的取值范围.

答案解析部分

1.【答案】B

2.【答案】B

3.【答案】A

4,.【答案】B

5.【答案】B

6.【答案】C

7.【答案】D

8.【答案】A

9.【答案】D

10.【答案】C

11.【答案】B

12.【答案】D

13.【答案】6或-6

14.【答案】2<x<4

15.【答案】-4

16.【答案】y2>yi>ya

17.【答案】>

18.【答案】4

19.【答案】(I)解:•••点C(3,6)在反比例函数y=k2x的图象上,

:.k?-3x6=18,

如图,作CEJ_x轴于E,

:C(3,6),点B是线段AC的中点,

,B(0,3),

•••B、(2在y=3x+b的图象上,

.(3kl+b=6

**l0xfc14-b=3'

解得k]=1,b=3,

一次函数为y=x+3;

_18

(2)解:由y=w,

,y=x+3

解得x=3,y=6或x=-6,y=-3,

•••D(-6,-3),

.1127

•・SACOD=S^CBO+S^BOD=2X3X3+2X3X6=-2-;

(3)解:由图可得,当0<x<3或x<-6时,kR+b吟.

20.【答案】(1)解:设函数表达式为V=号,把(6,3000)代入V=专

得3000=1.

解得:k=18000,所以V与t之间的函数表达式为:V=担泮;

(2)解:把t=2代入V=竺臀,得V=9000,

答:每小时的排水量应该是9000n?;

(3)解:把V=4000代入V=竺臀,得t=4.5,

根据反比例函数的性质,v随t的增大而减小,因此水池中的水至少要4.5h才能排完

21.【答案】(1)解:由题意可得1=号.

•・.图象过点4(4,9),

・,.U=/R=9x4=36(V).

."与R的函数表达式为/=¥

(2)解:当R=30时,/=竽=12⑷.

.••电流大小为124.

22.【答案】(1)解:将(n,3n)和(n+l

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论