版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,①,②,③,④可以判定的条件有().A.①②④ B.①②③ C.②③④ D.①②③④2、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为().A. B. C. D.3、下列几何体中,截面不可能是长方形的是()A.长方体 B.圆柱体C.球体 D.三棱柱4、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为()A. B. C. D.5、单项式的次数是()A.1 B.2 C.3 D.46、下列图像中表示是的函数的有几个()A.1个 B.2个 C.3个 D.4个7、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为()······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······A.3 B. C.4 D.8、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A. B. C. D.9、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75° B.70° C.65° D.55°10、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于()A.3631 B.4719 C.4723 D.4725第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.2、某校六年级两个班共有78人,若从一班调3人到二班,那么两班人数正好相等.一班原有人数是__人.3、比较大小[(﹣2)3]2___(﹣22)3.(填“>”,“<”或“=”)4、比较大小:______(用“、或”填空).5、计算:__.三、解答题(5小题,每小题10分,共计50分)1、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?2、已知的负的平方根是,的立方根是3,求的四次方根.3、某校准备从八年级1班、2班的团员中选取两名同学作为运动会的志愿者,已知1班有4名团员(其中男生2人,女生2人).2班有3名团员(其中男生1人,女生2人).(1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;(2)如果分别从1班、2班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.4、已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0.(1)请说明该方程实数根的个数情况;(2)如果方程的两个实数根为x1,x2,且(x1+1)⋅(x2+1)=8,求m的值.5、如图,等腰直角△ABC中,∠BAC=90°,在BC上取一点D,使得CD=AB,作∠ABC的角平分线交AD于E,请先按要求继续完成图形:以A为直角顶点,在AE右侧以AE为腰作等腰直角△AEF,其中∠EAF=90°.再解决以下问题:(1)求证:B,E,F三点共线;(2)连接CE,请问△ACE的面积和△ABF的面积有怎样的数量关系,并说明理由.-参考答案-一、单选题1、A【分析】根据平行线的判定定理逐个排查即可.【详解】解:①由于∠1和∠3是同位角,则①可判定;②由于∠2和∠3是内错角,则②可判定;③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;④①由于∠2和∠5是同旁内角,则④可判定;即①②④可判定.故选A.【点睛】本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······2、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有6个小球,其中白球有3个,∴摸出一个球是白球的概率是.故选:C.【点睛】本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、C【分析】根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.【详解】解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,故选:C.【点睛】此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.4、D【分析】根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.【详解】解:在Rt△ABC中,AB=,∴点B所走过的路径长为=故选D.【点睛】本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.5、C【分析】单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.【详解】解:单项式的次数是3,故选C【点睛】本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.6、A······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.【详解】解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,故第2个图符合题意,其它均不符合,故选:A.【点睛】本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.7、D【分析】勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.【详解】解:∵,,,∴,∵,D是BC的中点,垂足为D,∴BE=CE,故选:D.【点睛】本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.8、A【分析】根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.【详解】解:B是俯视图,C是左视图,D是主视图,故四个平面图形中A不是这个几何体的三视图.故选:A.【点睛】本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.9、B【分析】直接根据圆周角定理求解.【详解】解:,.故选:B.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、D【分析】根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······解:∵x1=8,∴x2=f(8)=4,x3=f(4)=2,x4=f(2)=1,x5=f(1)=4,…,从x2开始,每三个数循环一次,∴(2022-1)÷3=6732,∵x2+x3+x4=7,∴=8+673×7+4+2=4725.故选:D.【点睛】本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.二、填空题1、18°##18度【解析】【分析】由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD是正方形,∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CED=∠CEB=∠BED=63°,∵∠CED=∠CAD+∠ADE,∴∠ADE=63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.2、42【解析】【分析】设一班原有人数是人,则二班原有人数是人,根据从一班调3人到二班,那么两班人数正好相等,列方程求解.【详解】解答:解:设一班原有人数是人,则二班原有人数是人,依题意有:,解得.故一班原有人数是42人.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.3、>【解析】【分析】利用幂的乘方和积的乘方先计算[(-2)3]2与(-22)3,再比较大小得结论.【详解】解:∵[(-2)3]2=(-2)3×2=(-2)6=26,(-22)3=-26,又∵26>-26,∴[(-2)3]2>(-22)3.故答案为:>.【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方法则是解决本题的关键.4、【解析】【分析】先求两个多项式的差,再根据结果比较大小即可.【详解】解:∵,=,=∴,故答案为:.【点睛】本题考查了整式的加减,解题关键是熟练运用整式加减法则进行计算,根据结果判断大小.5、【解析】【分析】有理数的混合运算,此题中先算乘方,再算减法即可.【详解】,故答案为:.【点睛】此题考查有理数的混合运算,熟练掌握有理数混合运算顺序是解题关键.三、解答题1、(1)12%.补图见解析(2)270(3)12.5%【分析】(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.(1)解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:故答案为:12%.(2)解:调查的总人数为:120÷24%=500(人),参加过滑雪的人数为:500×54%=270(人),故答案为:270(3)解:体验过滑冰的人数为:500×48%=240(人),(270-240)÷240=12.5%,体验过滑雪的人比体验过滑冰的人多12.5%.【点睛】本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.2、【分析】根据的负的平方根是,的立方根是3,可以求得、的值,从而可以求得所求式子的四次方根.【详解】解:的负的平方根是,的立方根是3,,解得,,,的四次方根是,即的四次方根是.【点睛】本题考查平方根、立方根,以及二元一次方程组的解法,解答本题的关键是明确题意,求出、的值.3、(1)(2)两名同学恰好是一名男生、一名女生的概率为:【分析】(1)两个班一共有7名学生,其中男生有3人,随机选一名学生选出为男生的概率为:男生人数除······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(2)先根据题意画出树状图,第一层列出从1班选出的所有可能情况,第二层列出从二班选出的所有可能情况,根据树状图可知一共有12种等可能事件,其中选出的恰好是一名男生和一名女生的情况有6种,所以两名同学恰好是一名男生、一名女生的概率为.(1)解:恰好选出的同学是男生的概,故答案为:.(2)画树状图如图:,共有12个等可能事件,其中恰好两名同学恰好是一名男生、一名女生的概率为:,故答案为:.【点睛】本题考查简单的概率计算,以及列表法或列树状图法求概率,能够将根据题意列表,或列树状图,并根据列表或树状图求出概率.4、(1)方程有两个不相等的实数根(2)m=3或-3【分析】(1)根据根的判别式先求出Δ的值,再判断即可;(2)根据根与系数的关系得出x1+x2=2m-2,x1•x2=m2-2m,代入计算即可求出答案.(1)解:∵a=1,b=−(2m−2),c=m2−2m,∴=2-4(m2-2m)=4m2-8m+4-4m2+8m=4>0,∴方程有两个不相等的实数根;(2)解:∵(x1+1)⋅(x2+1)=8,整理得x1x2+(x1+x2)+1=8,∵x1+x2=2m-2,x1x2=m2-2m,∴m2-2m+2m-2+1=8,∴m2=9,∴m=3或m=-3.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法.5、(1)见解析(2)△ACE的面积和△ABF的面积相等.理由见解析【分析】(1)利用等腰直角三角形的性质得到∠CAD=∠CDA=67.5°,利用角平分线的性质得到∠ABE=∠DBE=22.5°,∠BEA=135°,即可推出∠BEA+∠AEF=180°;······线······○···
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年浙江摄影版(三起)(2020)小学信息技术六年级上册 第二单元第14课 综合应用(说课稿)
- 2024秋七年级英语下册 Module 3 Making plans Unit 1 What are you going to do at the weekends说课稿 (新版)外研版
- 2024-2025学年新教材高中政治 第一单元 探索世界与把握规律 2.2 运动的规律性说课稿 部编版必修4
- 2024-2025学年新教材高中历史 第二单元 中古时期的世界 第4课 中古时期的亚洲教学说课稿 新人教版必修《中外历史纲要(下)》
- 7 《包身工》 说课稿 2024-2025学年统编版高中语文选择性必修中册001
- 二零二五年酒店集团客房预订合作协议3篇
- 2024年高中语文 第8课 寡人之于国也说课稿8 新人教版必修3
- 2024年春七年级生物下册 第四单元 第一章 第三节 青春期说课稿 (新版)新人教版
- 2024-2025学年高中物理 第四章 机械能和能源 第2节 动能 势能说课稿1 粤教版必修2
- 流域综合治理合同(2篇)
- Unit6AtthesnackbarStorytimeDiningwithdragons(课件)译林版英语四年级上册
- 2023年四川省公务员录用考试《行测》真题卷及答案解析
- 机电一体化系统设计-第5章-特性分析
- 2025年高考物理复习压轴题:电磁感应综合问题(原卷版)
- 雨棚钢结构施工组织设计正式版
- 医院重点监控药品管理制度
- 2024尼尔森IQ中国本土快消企业调研报告
- 2024年印度辣椒行业状况及未来发展趋势报告
- 骨科医院感染控制操作流程
- 铸铝焊接工艺
- 《社区康复》课件-第六章 骨关节疾病、损伤患者的社区康复实践
评论
0/150
提交评论