Problem Solving in Artificial Intelligence 人工智能中的问题解决_第1页
Problem Solving in Artificial Intelligence 人工智能中的问题解决_第2页
Problem Solving in Artificial Intelligence 人工智能中的问题解决_第3页
Problem Solving in Artificial Intelligence 人工智能中的问题解决_第4页
Problem Solving in Artificial Intelligence 人工智能中的问题解决_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

19UCI816-ARTIFICIALINTELLIGENCEANDROBOTICS

UNIT1

ArtificialIntelligenceisamethodofmakingacomputer,acomputer-controlledrobot,orasoftwarethinkintelligentlylikethehumanmind.AIisaccomplishedbystudyingthepatternsofthehumanbrainandbyanalyzingthecognitiveprocess.Theoutcomeofthesestudiesdevelopsintelligentsoftwareandsystems.

Artificialintelligenceallowsmachinestounderstandandachievespecificgoals.AIincludesmachinelearningviadeeplearning.Theformerreferstomachinesautomaticallylearningfromexistingdatawithoutbeingassistedbyhumanbeings.Deeplearningallowsthemachinetoabsorbhugeamountsofunstructureddatasuchastext,images,andaudio.

HistoryofArtificialIntelligence

ArtificialIntelligenceisnotanewwordandnotanewtechnologyforresearchers.Thistechnologyismucholderthanyouwouldimagine.EventherearethemythsofMechanicalmeninAncientGreekandEgyptianMyths.FollowingaresomemilestonesinthehistoryofAIwhichdefinesthejourneyfromtheAIgenerationtotilldatedevelopment.

ThebirthofArtificialIntelligence(1952-1956)

Year1955:

AnAllenNewellandHerbertA.Simoncreatedthe"firstartificialintelligenceprogram"Whichwasnamedas

"LogicTheorist".Thisprogramhadproved38of52Mathematicstheorems,andfindnewandmoreelegantproofsforsometheorems.

Year1956:

Theword"ArtificialIntelligence"firstadoptedbyAmericanComputerscientistJohnMcCarthyattheDartmouthConference.Forthefirsttime,AIcoinedasanacademicfield.

Atthattimehigh-levelcomputerlanguagessuchasFORTRAN,LISP,orCOBOLwereinvented.AndtheenthusiasmforAIwasveryhighatthattime.

Thegoldenyears-Earlyenthusiasm(1956-1974)

Year1966:

Theresearchersemphasizeddevelopingalgorithmswhichcansolvemathematicalproblems.JosephWeizenbaumcreatedthefirstchatbotin1966,whichwasnamedasELIZA.

Year1972:

ThefirstintelligenthumanoidrobotwasbuiltinJapanwhichwasnamedasWABOT-1.

ThefirstAIwinter(1974-1980)

Thedurationbetweenyears1974to1980wasthefirstAIwinterduration.AIwinterreferstothetimeperiodwherecomputerscientistdealtwithasevereshortageoffundingfromgovernmentforAIresearches.

DuringAIwinters,aninterestofpublicityonartificialintelligencewasdecreased.

AboomofAI(1980-1987)

Year1980:

AfterAIwinterduration,AIcamebackwith"ExpertSystem".Expertsystemswereprogrammedthatemulatethedecision-makingabilityofahumanexpert.

IntheYear1980,thefirstnationalconferenceoftheAmericanAssociationofArtificialIntelligence

washeldatStanfordUniversity.

ThesecondAIwinter(1987-1993)

Thedurationbetweentheyears1987to1993wasthesecondAIWinterduration.

AgainInvestorsandgovernmentstoppedinfundingforAIresearchasduetohighcostbutnotefficientresult.TheexpertsystemsuchasXCONwasverycosteffective.

Theemergenceofintelligentagents(1993-2011)

Year1997:

Intheyear1997,IBMDeepBluebeatsworldchesschampion,GaryKasparov,andbecamethefirstcomputertobeataworldchesschampion.

Year2002:

forthefirsttime,AIenteredthehomeintheformofRoomba,avacuumcleaner.

Year2006:

AIcameintheBusinessworldtilltheyear2006.CompanieslikeFacebook,Twitter,andNetflixalsostartedusingAI.

Deeplearning,bigdataandartificialgeneralintelligence(2011-present)

Year2011:

Intheyear2011,IBM'sWatsonwonjeopardy,aquizshow,whereithadtosolvethecomplexquestionsaswellasriddles.Watsonhadprovedthatitcouldunderstandnaturallanguageandcansolvetrickyquestionsquickly.

Year2012:

GooglehaslaunchedanAndroidappfeature"Googlenow",whichwasabletoprovideinformationtotheuserasaprediction.

Year2014:

Intheyear2014,Chatbot"EugeneGoostman"wonacompetitionintheinfamous"Turingtest."

Year2018:

The"ProjectDebater"fromIBMdebatedoncomplextopicswithtwomasterdebatersandalsoperformedextremelywell.

GooglehasdemonstratedanAIprogram"Duplex"whichwasavirtualassistantandwhichhadtakenhairdresserappointmentoncall,andladyonothersidedidn'tnoticethatshewastalkingwiththemachine.

NowAIhasdevelopedtoaremarkablelevel.TheconceptofDeeplearning,bigdata,anddatasciencearenowtrendinglikeaboom.NowadayscompanieslikeGoogle,Facebook,IBM,andAmazonareworkingwithAIandcreatingamazingdevices.ThefutureofArtificialIntelligenceisinspiringandwillcomewithhighintelligence.

Actinghumanly

ThefirstproposalforsuccessinbuildingaprogramandactshumanlywastheTuringTest.Tobeconsideredintelligentaprogrammustbeabletoactsufficientlylikeahumantofoolaninterrogator.Ahumaninterrogatestheprogramandanotherhumanviaaterminalsimultaneously.Ifafterareasonableperiod,theinterrogatorcannottellwhichiswhich,theprogrampasses.

Topassthistestrequires:

naturallanguageprocessing

knowledgerepresentation

automatedreasoning

machinelearning

Thistestavoidsphysicalcontactandconcentrateson"higherlevel"mentalfaculties.A

total

Turingtestwouldrequiretheprogramtoalsodo:

computervision

robotics

ThinkingHumanly

Thisrequires"gettinginside"ofthehumanmindtoseehowitworksandthencomparingourcomputerprogramstothis.Thisiswhat

cognitive

science

attemptstodo.Anotherwaytodothisistoobserveahumanproblemsolvingandarguethatone'sprogramsgoaboutproblemsolvinginasimilarway.

Example:

GPS(GeneralProblemSolver)wasanearlycomputerprogramthatattemptedtomodelhumanthinking.ThedeveloperswerenotsomuchinterestedinwhetherornotGPSsolvedproblemscorrectly.Theyweremoreinterestedinshowingthatitsolvedproblemslikepeople,goingthroughthesamestepsandtakingaroundthesameamountoftimetoperformthosesteps.

ThinkingRationally

Aristotlewasoneofthefirsttoattempttocodify"thinking".His

syllogisms

providedpatternsofargumentstructurethatalwaysgavecorrectconclusions,givingcorrectpremises.

Example:Allcomputersuseenergy.Usingenergyalwaysgeneratesheat.Therefore,allcomputersgenerateheat.

Thisinitiatethefieldof

logic.Formallogicwasdevelopedinthelatenineteenthcentury.Thiswasthefirststeptowardenablingcomputerprogramstoreasonlogically.

By1965,programsexistedthatcould,givenenoughtimeandmemory,takeadescriptionoftheprobleminlogicalnotationandfindthesolution,ifoneexisted.The

logicist

traditioninAIhopestobuildonsuchprogramstocreateintelligence.

Therearetwomainobstaclestothisapproach:First,itisdifficulttomakeinformalknowledgepreciseenoughtousethelogicistapproachparticularlywhenthereisuncertaintyintheknowledge.Second,thereisabigdifferencebetweenbeingabletosolveaprobleminprincipleanddoingsoinpractice.

ActingRationally:Therationalagentapproach

Actingrationallymeansactingsoastoachieveone'sgoals,givenone'sbeliefs.An

agent

isjustsomethingthatperceivesandacts.

InthelogicalapproachtoAI,theemphasisisoncorrectinferences.Thisisoftenpartofbeingarationalagentbecauseonewaytoactrationallyistoreasonlogicallyandthenactononesconclusions.Butthisisnotallofrationalitybecauseagentsoftenfindthemselvesinsituationswherethereisnoprovablycorrectthingtodo,yettheymustdosomething.

Therearealsowaystoactrationallythatdonotseemtoinvolveinference,e.g.,reflexactions.

ThestudyofAIasrationalagentdesignhastwoadvantages:

Itismoregeneralthanthelogicalapproachbecausecorrectinferenceisonlyausefulmechanismforachievingrationality,notanecessaryone.

Itismoreamenabletoscientificdevelopmentthanapproachesbasedonhumanbehaviourorhumanthoughtbecauseastandardofrationalitycanbedefinedindependentofhumans.

Achievingperfectrationalityincomplexenvironmentsisnotpossiblebecausethecomputationaldemandsaretoohigh.However,wewillstudyperfectrationalityasastartingplace.

cognitivemodeling

Cognitivemodellingisanareaofcomputersciencethatdealswithsimulatinghumanproblem-solvingandmentalprocessinginacomputerizedmodel.Suchamodelcanbeusedtosimulateorpredicthumanbehaviourorperformanceontaskssimilartotheonesmodelledandimprovehuman-computerinteraction

Cognitivemodellingisusedinnumerousartificialintelligence(

AI

)applications,suchas

expertsystems

,

naturallanguageprocessing

,

neuralnetworks

,andinroboticsandvirtualrealityapplications.Cognitivemodelsarealsousedtoimproveproductsinmanufacturingsegments,suchas

humanfactors

,engineering,andcomputergameanduserinterfacedesign.

Anadvancedapplicationofcognitivemodellingisthecreationofcognitivemachines,whichareAIprogramsthatapproximatesomeareasofhumancognition.OneofthegoalsofSandia'sprojectistomakehuman-computerinteractionmorelikeaninteractionbetweentwohumans.

Typesofcognitivemodels

Somehighlysophisticatedprogramsmodelspecificintellectualprocesses.Techniquessuchasdiscrepancydetectionareusedtoimprovethesecomplexmodels.

Discrepancydetectionsystemssignalwhenthereisadifferencebetweenanindividual'sactualstateorbehaviorandtheexpectedstateorbehaviorasperthecognitivemodel.Thatinformationisthenusedtoincreasethecomplexityofthemodel.

Anothertypeofcognitivemodelistheneuralnetwork.Thismodelwasfirsthypothesizedinthe1940s,butithasonlyrecentlybecomepracticalthankstoadvancementsindataprocessingandtheaccumulationoflargeamountsofdatatotrain

algorithms

.

Neuralnetworksworksimilarlytothehumanbrainbyrunningtrainingdatathroughalargenumberofcomputationalnodes,calledartificialneurons,whichpassinformationbackandforthbetweeneachother.Byaccumulatinginformationinthisdistributedway,applicationscanmakepredictionsaboutfutureinputs.

R

einforcementlearning

isanincreasinglyprominentareaofcognitivemodeling.Thisapproachhasalgorithmsrunthroughmanyiterationsofataskthattakesmultiplesteps,incentivizingactionsthateventuallyproducepositiveoutcomes,whilepenalizingactionsthatleadtonegativeones.ThisisaprimarypartoftheAIalgorithmthatGoogle's

DeepMind

usedforitsAlphaGoapplication,whichbestedthetophumanGoplayersin2016

Thesemodels,whichcanalsobeusedinnaturallanguageprocessingandsmartassistantapplications,haveimprovedhuman-computerinteraction,makingitpossibleformachinestohaverudimentaryconversationswithhumans.

AgentsinArtificialIntelligence

AnAIsystemcanbedefinedasthestudyoftherationalagentanditsenvironment.Theagentssensetheenvironmentthroughsensorsandactontheirenvironmentthroughactuators.AnAIagentcanhavementalpropertiessuchasknowledge,belief,intention,etc.

WhatisanAgent?

Anagentcanbeanythingthatperceiveitsenvironmentthroughsensorsandactuponthatenvironmentthroughactuators.AnAgentrunsinthecycleof

perceiving,

thinking,and

acting.Anagentcanbe:

Human-Agent:

Ahumanagenthaseyes,ears,andotherorganswhichworkforsensorsandhand,legs,vocaltractworkforactuators.

RoboticAgent:

Aroboticagentcanhavecameras,infraredrangefinder,NLPforsensorsandvariousmotorsforactuators.

SoftwareAgent:

Softwareagentcanhavekeystrokes,filecontentsassensoryinputandactonthoseinputsanddisplayoutputonthescreen.

Sensor:

Sensorisadevicewhichdetectsthechangeintheenvironmentandsendstheinformationtootherelectronicdevices.Anagentobservesitsenvironmentthroughsensors.

Actuators:

Actuatorsarethecomponentofmachinesthatconvertsenergyintomotion.Theactuatorsareonlyresponsibleformovingandcontrollingasystem.Anactuatorcanbeanelectricmotor,gears,rails,etc.

Effectors:

Effectorsarethedeviceswhichaffecttheenvironment.Effectorscanbelegs,wheels,arms,fingers,wings,fins,anddisplayscreen.

IntelligentAgents:

Anintelligentagentisanautonomousentitywhichactsuponanenvironmentusingsensorsandactuatorsforachievinggoals.Anintelligentagentmaylearnfromtheenvironmenttoachievetheirgoals.Athermostatisanexampleofanintelligentagent.

FollowingarethemainfourrulesforanAIagent:

Rule1:

AnAIagentmusthavetheabilitytoperceivetheenvironment.

Rule2:

Theobservationmustbeusedtomakedecisions.

Rule3:

Decisionshouldresultinanaction.

Rule4:

TheactiontakenbyanAIagentmustbearationalaction.

RationalAgent:

Arationalagentisanagentwhichhasclearpreference,modelsuncertainty,andactsinawaytomaximizeitsperformancemeasurewithallpossibleactions.

Arationalagentissaidtoperformtherightthings.AIisaboutcreatingrationalagentstouseforgametheoryanddecisiontheoryforvariousreal-worldscenarios.

ForanAIagent,therationalactionismostimportantbecauseinAIreinforcementlearningalgorithm,foreachbestpossibleaction,agentgetsthepositiverewardandforeachwrongaction,anagentgetsanegativereward.

StructureofanAIAgent

ThetaskofAIistodesignanagentprogramwhichimplementstheagentfunction.Thestructureofanintelligentagentisacombinationofarchitectureandagentprogram.Itcanbeviewedas:

Agent

=

Architecture

+

Agent

program

FollowingarethemainthreetermsinvolvedinthestructureofanAIagent:

Architecture:

ArchitectureismachinerythatanAIagentexecuteson.

AgentFunction:

Agentfunctionisusedtomapapercepttoanaction.

ExampleofAgentswiththeirPEASrepresentation

Agent

Performancemeasure

Environment

Actuators

Sensors

1.MedicalDiagnose

Healthypatient

Minimizedcost

Patient

Hospital

Staff

Tests

Treatments

Keyboard

(Entryofsymptoms)

2.VacuumCleaner

Cleanness

Efficiency

Batterylife

Security

Room

Table

Woodfloor

Carpet

Variousobstacles

Wheels

Brushes

VacuumExtractor

Camera

Dirtdetectionsensor

Cliffsensor

BumpSensor

InfraredWallSensor

3.Part-pickingRobot

Percentageofpartsincorrectbins.

Conveyorbeltwithparts,

Bins

JointedArms

Hand

Camera

Jointanglesensors.

ProblemSolvinginArtificialIntelligence

ThereflexagentofAIdirectlymapsstatesintoaction.Whenevertheseagentsfailtooperateinanenvironmentwherethestateofmappingistoolargeandnoteasilyperformedbytheagent,thenthestatedproblemdissolvesandsenttoaproblem-solvingdomainwhichbreaksthelargestoredproblemintothesmallerstorageareaandresolvesonebyone.Thefinalintegratedactionwillbethedesiredoutcomes.

Onthebasisoftheproblemandtheirworkingdomain,differenttypesofproblem-solvingagentdefinedanduseatanatomiclevelwithoutanyinternalstatevisiblewithaproblem-solvingalgorithm.Theproblem-solvingagentperformspreciselybydefiningproblemsandseveralsolutions.Sowecansaythatproblemsolvingisapartofartificialintelligencethatencompassesanumberoftechniquessuchasatree,B-tree,heuristicalgorithmstosolveaproblem.

Wecanalsosaythataproblem-solvingagentisaresult-drivenagentandalwaysfocusesonsatisfyingthegoals.

Stepsproblem-solvinginAI:

TheproblemofAIisdirectlyassociatedwiththenatureofhumansandtheiractivities.Soweneedanumberoffinitestepstosolveaproblemwhichmakeshumaneasyworks.

Thesearethefollowingstepswhichrequiresolvingaproblem:

GoalFormulation:

Thisoneisthefirstandsimplestepinproblem-solving.Itorganizesfinitestepstoformulatetarget/goalswhichrequiresomeactiontoachievethegoal.TodaytheformulationofthegoalisbasedonAIagents.

Problemformulation:

Itisoneofthecorestepsofproblem-solvingwhichdecideswhatactionshouldbetakentoachievetheformulatedgoal.InAIthiscorepartisdependentuponsoftwareagentwhichconsistedofthefollowingcomponentstoformulatetheassociatedproblem.

Componentstoformulatetheassociatedproblem:

InitialState:

ThisstaterequiresaninitialstatefortheproblemwhichstartstheAIagenttowardsaspecifiedgoal.Inthisstatenewmethodsalsoinitializeproblemdomainsolvingbyaspecificclass.

Action:

Thisstageofproblemformulationworkswithfunctionwithaspecificclasstakenfromtheinitialstateandallpossibleactionsdoneinthisstage.

Transition:

Thisstageofproblemformulationintegratestheactualactiondonebythepreviousactionstageandcollectsthefinalstagetoforwardittotheirnextstage.

Goaltest:

Thisstagedeterminesthatthespecifiedgoalachievedbytheintegratedtransitionmodelornot,wheneverthegoalachievesstoptheactionandforwardintothenextstagetodeterminesthecosttoachievethegoal.

Pathcosting:

Thiscomponentofproblem-solvingnumericalassignedwhatwillbethecosttoachievethegoal.Itrequiresallhardwaresoftwareandhumanworkingcost.

Typesofsearchalgorithms:

Therearefortoomanypowerfulsearchalgorithmsouttheretofitinasinglearticle.Instead,thisarticlewilldiscuss

six

ofthefundamentalsearchalgorithms,dividedinto

two

categories,asshownbelow.

UninformedSearchAlgorithms:

Thesearchalgorithmsinthissectionhavenoadditionalinformationonthegoalnodeotherthantheoneprovidedintheproblemdefinition.Theplanstoreachthegoalstatefromthestartstatedifferonlybytheorderand/orlengthofactions.Uninformedsearchisalsocalled

Blindsearch.

Thesealgorithmscanonlygeneratethesuccessorsanddifferentiatebetweenthegoalstateandnongoalstate.

Thefollowinguninformedsearchalgorithmsarediscussedinthissection.

DepthFirstSearch

BreadthFirstSearch

UniformCostSearch

Eachofthesealgorithmswillhave:

Aproblem

graph,

containingthestartnodeSandthegoalnodeG.

A

strategy,

describingthemannerinwhichthegraphwillbetraversedtogettoG.

A

fringe,

whichisadatastructureusedtostoreallthepossiblestates(nodes)thatyoucangofromthecurrentstates.

A

tree,

thatresultswhiletraversingtothegoalnode.

Asolution

plan,

whichthesequenceofnodesfromStoG.

DepthFirstSearch

:

Depth-firstsearch(DFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Thealgorithmstartsattherootnode(selectingsomearbitrarynodeastherootnodeinthecaseofagraph)andexploresasfaraspossiblealongeachbranchbeforebacktracking.

Ituseslastin-first-outstrategyandhenceitisimplementedusingastack.

Example:

Question.

WhichsolutionwouldDFSfindtomovefromnodeStonodeGifrunonthegraphbelow?

Solution.

Theequivalentsearchtreefortheabovegraphisasfollows.AsDFStraversesthetree“deepestnodefirst”,itwouldalwayspickthedeeperbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.

Path:

 S->A->B->C->G

Breadth-firstsearch(BFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Itstartsatthetreeroot(orsomearbitrarynodeofagraph,sometimesreferredtoasa‘searchkey’),andexploresalloftheneighbornodesatthepresentdepthpriortomovingontothenodesatthenextdepthlevel.

Itisimplementedusingaqueue.

Example:

Question.

WhichsolutionwouldBFSfindtomovefromnodeStonodeGifrunonthegraphbelow?

Solution.

Theequivalentsearchtreefortheabovegraphisasfollows.AsBFStraversesthetree“shallowestnodefirst”,itwouldalwayspicktheshallowerbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.

Path:

S->D->G

InformedSearchingAlgorithms

Informedsearchalgorithmscontaininformationaboutthegoalstate.Thiswillhelpinmoreefficientsearching.Itcontainsanarrayofknowledgeabouthowcloseisthegoalstatetothepresentstate,pathcost,howtoreachthegoal,etc.Informedsearchalgorithmsareusefulinlargedatabaseswhereuninformedsearchalgorithmscan’tmakeanaccurateresult.

Informedsearchalgorithmsarealsocalledheuristicsearchsinceitusestheideaofheuristics.

Theheuristicfunctionisafunctionusedtomeasuretheclosenessofthecurrentstatetothegoalstateandheuristicpropertiesareusedtofindoutthebestpossiblepathtoreachthegoalstateconcerningthepathcost.

ConsideranexampleofsearchingaplaceyouwanttovisitonGooglemaps.Thecurrentlocationandthedestinationplacearegiventothesearchalgorithmforcalculatingtheaccuratedistance,timetaken,andreal-timetrafficupdatesonthatparticularroute.Thisisexecutedusinginformedsearchalgorithms.

InformedSearchAlgorithms:

Here,thealgorithmshaveinformationonthegoalstate,whichhelpsinmoreefficientsearching.Thisinformationisobtainedbysomethingcalleda

heuristic.

Inthissection,wewilldiscussthefollowingsearchalgorithms.

GreedySearch

A*TreeSearch

A*GraphSearch

SearchHeuristics:

Inaninformedsearch,aheuristicisa

function

thatestimateshowcloseastateistothegoalstate.Forexample–Manhattandistance,Euclideandistance,etc.(Lesserthedistance,closerthegoal.)Differentheuristicsareusedindifferentinformedalgorithmsdiscussedbelow.

GreedySearch:

Ingreedysearch,weexpandthenodeclosesttothegoalnode.The“closeness”isestimatedbyaheuristich(x).

Heuristic:

Aheuristichisdefinedas-

h(x)=Estimateofdistanceofnodexfromthegoalnode.

Lowerthevalueofh(x),closeristhenodefromthegoal.

Strategy:

Expandthenodeclosesttothegoalstate,

i.e.

expandthenodewithalowerhvalue.

Example:

Question.

FindthepathfromStoGusinggreedysearch.Theheuristicvalueshofeachnodebelowthenameofthenode.

Solution.

StartingfromS,wecantraversetoA(h=9)orD(h=5).WechooseD,asithasthelowerheuristiccost.NowfromD,wecanmovetoB(h=4)orE(h=3).WechooseEwithalowerheuristiccost.Finally,fromE,wegotoG(h=0).Thisentiretraversalisshowninthesearchtreebelow,inblue.

Path:

 S->D->E->G

Advantage:

Workswellwithinformedsearchproblems,withfewerstepstoreachagoal.

Disadvantage:

CanturnintounguidedDFSintheworstcase.

A*TreeSearch:

A*TreeSearch,orsimplyknownasA*Search,combinesthestrengthsofuniform-costsearchandgreedysearch.Inthissearch,theheuristicisthesummationofthecostinUCS,denotedbyg(x),andthecostinthegreedysearch,denotedbyh(x).Thesummedcostisdenotedbyf(x).

Heuristic:

ThefollowingpointsshouldbenotedwrtheuristicsinA*search.

Here,h(x)iscalledthe

forwardcost

andisanestimateofthedistanceofthecurrentnodefromthegoalnode.

And,g(x)iscalledthe

backwardcost

andisthecumulativecostofanodefromtherootnode.

A*searchisoptimalonlywhenforallnodes,theforwardcostforanodeh(x)underestimatestheactualcosth*(x)toreachthegoal.Thispropertyof

A*

heuristiciscalled

admissibility.

Admissibility: 

Strategy:

Choosethenodewiththelowestf(x)value.

Example:

Question.

FindthepathtoreachfromStoGusingA*search.

Solution.

StartingfromS,thealgorithmcomputesg(x)+h(x)forallnodesinthefringeateachstep,choosingthenod

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论