版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19UCI816-ARTIFICIALINTELLIGENCEANDROBOTICS
UNIT1
ArtificialIntelligenceisamethodofmakingacomputer,acomputer-controlledrobot,orasoftwarethinkintelligentlylikethehumanmind.AIisaccomplishedbystudyingthepatternsofthehumanbrainandbyanalyzingthecognitiveprocess.Theoutcomeofthesestudiesdevelopsintelligentsoftwareandsystems.
Artificialintelligenceallowsmachinestounderstandandachievespecificgoals.AIincludesmachinelearningviadeeplearning.Theformerreferstomachinesautomaticallylearningfromexistingdatawithoutbeingassistedbyhumanbeings.Deeplearningallowsthemachinetoabsorbhugeamountsofunstructureddatasuchastext,images,andaudio.
HistoryofArtificialIntelligence
ArtificialIntelligenceisnotanewwordandnotanewtechnologyforresearchers.Thistechnologyismucholderthanyouwouldimagine.EventherearethemythsofMechanicalmeninAncientGreekandEgyptianMyths.FollowingaresomemilestonesinthehistoryofAIwhichdefinesthejourneyfromtheAIgenerationtotilldatedevelopment.
ThebirthofArtificialIntelligence(1952-1956)
Year1955:
AnAllenNewellandHerbertA.Simoncreatedthe"firstartificialintelligenceprogram"Whichwasnamedas
"LogicTheorist".Thisprogramhadproved38of52Mathematicstheorems,andfindnewandmoreelegantproofsforsometheorems.
Year1956:
Theword"ArtificialIntelligence"firstadoptedbyAmericanComputerscientistJohnMcCarthyattheDartmouthConference.Forthefirsttime,AIcoinedasanacademicfield.
Atthattimehigh-levelcomputerlanguagessuchasFORTRAN,LISP,orCOBOLwereinvented.AndtheenthusiasmforAIwasveryhighatthattime.
Thegoldenyears-Earlyenthusiasm(1956-1974)
Year1966:
Theresearchersemphasizeddevelopingalgorithmswhichcansolvemathematicalproblems.JosephWeizenbaumcreatedthefirstchatbotin1966,whichwasnamedasELIZA.
Year1972:
ThefirstintelligenthumanoidrobotwasbuiltinJapanwhichwasnamedasWABOT-1.
ThefirstAIwinter(1974-1980)
Thedurationbetweenyears1974to1980wasthefirstAIwinterduration.AIwinterreferstothetimeperiodwherecomputerscientistdealtwithasevereshortageoffundingfromgovernmentforAIresearches.
DuringAIwinters,aninterestofpublicityonartificialintelligencewasdecreased.
AboomofAI(1980-1987)
Year1980:
AfterAIwinterduration,AIcamebackwith"ExpertSystem".Expertsystemswereprogrammedthatemulatethedecision-makingabilityofahumanexpert.
IntheYear1980,thefirstnationalconferenceoftheAmericanAssociationofArtificialIntelligence
washeldatStanfordUniversity.
ThesecondAIwinter(1987-1993)
Thedurationbetweentheyears1987to1993wasthesecondAIWinterduration.
AgainInvestorsandgovernmentstoppedinfundingforAIresearchasduetohighcostbutnotefficientresult.TheexpertsystemsuchasXCONwasverycosteffective.
Theemergenceofintelligentagents(1993-2011)
Year1997:
Intheyear1997,IBMDeepBluebeatsworldchesschampion,GaryKasparov,andbecamethefirstcomputertobeataworldchesschampion.
Year2002:
forthefirsttime,AIenteredthehomeintheformofRoomba,avacuumcleaner.
Year2006:
AIcameintheBusinessworldtilltheyear2006.CompanieslikeFacebook,Twitter,andNetflixalsostartedusingAI.
Deeplearning,bigdataandartificialgeneralintelligence(2011-present)
Year2011:
Intheyear2011,IBM'sWatsonwonjeopardy,aquizshow,whereithadtosolvethecomplexquestionsaswellasriddles.Watsonhadprovedthatitcouldunderstandnaturallanguageandcansolvetrickyquestionsquickly.
Year2012:
GooglehaslaunchedanAndroidappfeature"Googlenow",whichwasabletoprovideinformationtotheuserasaprediction.
Year2014:
Intheyear2014,Chatbot"EugeneGoostman"wonacompetitionintheinfamous"Turingtest."
Year2018:
The"ProjectDebater"fromIBMdebatedoncomplextopicswithtwomasterdebatersandalsoperformedextremelywell.
GooglehasdemonstratedanAIprogram"Duplex"whichwasavirtualassistantandwhichhadtakenhairdresserappointmentoncall,andladyonothersidedidn'tnoticethatshewastalkingwiththemachine.
NowAIhasdevelopedtoaremarkablelevel.TheconceptofDeeplearning,bigdata,anddatasciencearenowtrendinglikeaboom.NowadayscompanieslikeGoogle,Facebook,IBM,andAmazonareworkingwithAIandcreatingamazingdevices.ThefutureofArtificialIntelligenceisinspiringandwillcomewithhighintelligence.
Actinghumanly
ThefirstproposalforsuccessinbuildingaprogramandactshumanlywastheTuringTest.Tobeconsideredintelligentaprogrammustbeabletoactsufficientlylikeahumantofoolaninterrogator.Ahumaninterrogatestheprogramandanotherhumanviaaterminalsimultaneously.Ifafterareasonableperiod,theinterrogatorcannottellwhichiswhich,theprogrampasses.
Topassthistestrequires:
naturallanguageprocessing
knowledgerepresentation
automatedreasoning
machinelearning
Thistestavoidsphysicalcontactandconcentrateson"higherlevel"mentalfaculties.A
total
Turingtestwouldrequiretheprogramtoalsodo:
computervision
robotics
ThinkingHumanly
Thisrequires"gettinginside"ofthehumanmindtoseehowitworksandthencomparingourcomputerprogramstothis.Thisiswhat
cognitive
science
attemptstodo.Anotherwaytodothisistoobserveahumanproblemsolvingandarguethatone'sprogramsgoaboutproblemsolvinginasimilarway.
Example:
GPS(GeneralProblemSolver)wasanearlycomputerprogramthatattemptedtomodelhumanthinking.ThedeveloperswerenotsomuchinterestedinwhetherornotGPSsolvedproblemscorrectly.Theyweremoreinterestedinshowingthatitsolvedproblemslikepeople,goingthroughthesamestepsandtakingaroundthesameamountoftimetoperformthosesteps.
ThinkingRationally
Aristotlewasoneofthefirsttoattempttocodify"thinking".His
syllogisms
providedpatternsofargumentstructurethatalwaysgavecorrectconclusions,givingcorrectpremises.
Example:Allcomputersuseenergy.Usingenergyalwaysgeneratesheat.Therefore,allcomputersgenerateheat.
Thisinitiatethefieldof
logic.Formallogicwasdevelopedinthelatenineteenthcentury.Thiswasthefirststeptowardenablingcomputerprogramstoreasonlogically.
By1965,programsexistedthatcould,givenenoughtimeandmemory,takeadescriptionoftheprobleminlogicalnotationandfindthesolution,ifoneexisted.The
logicist
traditioninAIhopestobuildonsuchprogramstocreateintelligence.
Therearetwomainobstaclestothisapproach:First,itisdifficulttomakeinformalknowledgepreciseenoughtousethelogicistapproachparticularlywhenthereisuncertaintyintheknowledge.Second,thereisabigdifferencebetweenbeingabletosolveaprobleminprincipleanddoingsoinpractice.
ActingRationally:Therationalagentapproach
Actingrationallymeansactingsoastoachieveone'sgoals,givenone'sbeliefs.An
agent
isjustsomethingthatperceivesandacts.
InthelogicalapproachtoAI,theemphasisisoncorrectinferences.Thisisoftenpartofbeingarationalagentbecauseonewaytoactrationallyistoreasonlogicallyandthenactononesconclusions.Butthisisnotallofrationalitybecauseagentsoftenfindthemselvesinsituationswherethereisnoprovablycorrectthingtodo,yettheymustdosomething.
Therearealsowaystoactrationallythatdonotseemtoinvolveinference,e.g.,reflexactions.
ThestudyofAIasrationalagentdesignhastwoadvantages:
Itismoregeneralthanthelogicalapproachbecausecorrectinferenceisonlyausefulmechanismforachievingrationality,notanecessaryone.
Itismoreamenabletoscientificdevelopmentthanapproachesbasedonhumanbehaviourorhumanthoughtbecauseastandardofrationalitycanbedefinedindependentofhumans.
Achievingperfectrationalityincomplexenvironmentsisnotpossiblebecausethecomputationaldemandsaretoohigh.However,wewillstudyperfectrationalityasastartingplace.
cognitivemodeling
Cognitivemodellingisanareaofcomputersciencethatdealswithsimulatinghumanproblem-solvingandmentalprocessinginacomputerizedmodel.Suchamodelcanbeusedtosimulateorpredicthumanbehaviourorperformanceontaskssimilartotheonesmodelledandimprovehuman-computerinteraction
Cognitivemodellingisusedinnumerousartificialintelligence(
AI
)applications,suchas
expertsystems
,
naturallanguageprocessing
,
neuralnetworks
,andinroboticsandvirtualrealityapplications.Cognitivemodelsarealsousedtoimproveproductsinmanufacturingsegments,suchas
humanfactors
,engineering,andcomputergameanduserinterfacedesign.
Anadvancedapplicationofcognitivemodellingisthecreationofcognitivemachines,whichareAIprogramsthatapproximatesomeareasofhumancognition.OneofthegoalsofSandia'sprojectistomakehuman-computerinteractionmorelikeaninteractionbetweentwohumans.
Typesofcognitivemodels
Somehighlysophisticatedprogramsmodelspecificintellectualprocesses.Techniquessuchasdiscrepancydetectionareusedtoimprovethesecomplexmodels.
Discrepancydetectionsystemssignalwhenthereisadifferencebetweenanindividual'sactualstateorbehaviorandtheexpectedstateorbehaviorasperthecognitivemodel.Thatinformationisthenusedtoincreasethecomplexityofthemodel.
Anothertypeofcognitivemodelistheneuralnetwork.Thismodelwasfirsthypothesizedinthe1940s,butithasonlyrecentlybecomepracticalthankstoadvancementsindataprocessingandtheaccumulationoflargeamountsofdatatotrain
algorithms
.
Neuralnetworksworksimilarlytothehumanbrainbyrunningtrainingdatathroughalargenumberofcomputationalnodes,calledartificialneurons,whichpassinformationbackandforthbetweeneachother.Byaccumulatinginformationinthisdistributedway,applicationscanmakepredictionsaboutfutureinputs.
R
einforcementlearning
isanincreasinglyprominentareaofcognitivemodeling.Thisapproachhasalgorithmsrunthroughmanyiterationsofataskthattakesmultiplesteps,incentivizingactionsthateventuallyproducepositiveoutcomes,whilepenalizingactionsthatleadtonegativeones.ThisisaprimarypartoftheAIalgorithmthatGoogle's
DeepMind
usedforitsAlphaGoapplication,whichbestedthetophumanGoplayersin2016
Thesemodels,whichcanalsobeusedinnaturallanguageprocessingandsmartassistantapplications,haveimprovedhuman-computerinteraction,makingitpossibleformachinestohaverudimentaryconversationswithhumans.
AgentsinArtificialIntelligence
AnAIsystemcanbedefinedasthestudyoftherationalagentanditsenvironment.Theagentssensetheenvironmentthroughsensorsandactontheirenvironmentthroughactuators.AnAIagentcanhavementalpropertiessuchasknowledge,belief,intention,etc.
WhatisanAgent?
Anagentcanbeanythingthatperceiveitsenvironmentthroughsensorsandactuponthatenvironmentthroughactuators.AnAgentrunsinthecycleof
perceiving,
thinking,and
acting.Anagentcanbe:
Human-Agent:
Ahumanagenthaseyes,ears,andotherorganswhichworkforsensorsandhand,legs,vocaltractworkforactuators.
RoboticAgent:
Aroboticagentcanhavecameras,infraredrangefinder,NLPforsensorsandvariousmotorsforactuators.
SoftwareAgent:
Softwareagentcanhavekeystrokes,filecontentsassensoryinputandactonthoseinputsanddisplayoutputonthescreen.
Sensor:
Sensorisadevicewhichdetectsthechangeintheenvironmentandsendstheinformationtootherelectronicdevices.Anagentobservesitsenvironmentthroughsensors.
Actuators:
Actuatorsarethecomponentofmachinesthatconvertsenergyintomotion.Theactuatorsareonlyresponsibleformovingandcontrollingasystem.Anactuatorcanbeanelectricmotor,gears,rails,etc.
Effectors:
Effectorsarethedeviceswhichaffecttheenvironment.Effectorscanbelegs,wheels,arms,fingers,wings,fins,anddisplayscreen.
IntelligentAgents:
Anintelligentagentisanautonomousentitywhichactsuponanenvironmentusingsensorsandactuatorsforachievinggoals.Anintelligentagentmaylearnfromtheenvironmenttoachievetheirgoals.Athermostatisanexampleofanintelligentagent.
FollowingarethemainfourrulesforanAIagent:
Rule1:
AnAIagentmusthavetheabilitytoperceivetheenvironment.
Rule2:
Theobservationmustbeusedtomakedecisions.
Rule3:
Decisionshouldresultinanaction.
Rule4:
TheactiontakenbyanAIagentmustbearationalaction.
RationalAgent:
Arationalagentisanagentwhichhasclearpreference,modelsuncertainty,andactsinawaytomaximizeitsperformancemeasurewithallpossibleactions.
Arationalagentissaidtoperformtherightthings.AIisaboutcreatingrationalagentstouseforgametheoryanddecisiontheoryforvariousreal-worldscenarios.
ForanAIagent,therationalactionismostimportantbecauseinAIreinforcementlearningalgorithm,foreachbestpossibleaction,agentgetsthepositiverewardandforeachwrongaction,anagentgetsanegativereward.
StructureofanAIAgent
ThetaskofAIistodesignanagentprogramwhichimplementstheagentfunction.Thestructureofanintelligentagentisacombinationofarchitectureandagentprogram.Itcanbeviewedas:
Agent
=
Architecture
+
Agent
program
FollowingarethemainthreetermsinvolvedinthestructureofanAIagent:
Architecture:
ArchitectureismachinerythatanAIagentexecuteson.
AgentFunction:
Agentfunctionisusedtomapapercepttoanaction.
ExampleofAgentswiththeirPEASrepresentation
Agent
Performancemeasure
Environment
Actuators
Sensors
1.MedicalDiagnose
Healthypatient
Minimizedcost
Patient
Hospital
Staff
Tests
Treatments
Keyboard
(Entryofsymptoms)
2.VacuumCleaner
Cleanness
Efficiency
Batterylife
Security
Room
Table
Woodfloor
Carpet
Variousobstacles
Wheels
Brushes
VacuumExtractor
Camera
Dirtdetectionsensor
Cliffsensor
BumpSensor
InfraredWallSensor
3.Part-pickingRobot
Percentageofpartsincorrectbins.
Conveyorbeltwithparts,
Bins
JointedArms
Hand
Camera
Jointanglesensors.
ProblemSolvinginArtificialIntelligence
ThereflexagentofAIdirectlymapsstatesintoaction.Whenevertheseagentsfailtooperateinanenvironmentwherethestateofmappingistoolargeandnoteasilyperformedbytheagent,thenthestatedproblemdissolvesandsenttoaproblem-solvingdomainwhichbreaksthelargestoredproblemintothesmallerstorageareaandresolvesonebyone.Thefinalintegratedactionwillbethedesiredoutcomes.
Onthebasisoftheproblemandtheirworkingdomain,differenttypesofproblem-solvingagentdefinedanduseatanatomiclevelwithoutanyinternalstatevisiblewithaproblem-solvingalgorithm.Theproblem-solvingagentperformspreciselybydefiningproblemsandseveralsolutions.Sowecansaythatproblemsolvingisapartofartificialintelligencethatencompassesanumberoftechniquessuchasatree,B-tree,heuristicalgorithmstosolveaproblem.
Wecanalsosaythataproblem-solvingagentisaresult-drivenagentandalwaysfocusesonsatisfyingthegoals.
Stepsproblem-solvinginAI:
TheproblemofAIisdirectlyassociatedwiththenatureofhumansandtheiractivities.Soweneedanumberoffinitestepstosolveaproblemwhichmakeshumaneasyworks.
Thesearethefollowingstepswhichrequiresolvingaproblem:
GoalFormulation:
Thisoneisthefirstandsimplestepinproblem-solving.Itorganizesfinitestepstoformulatetarget/goalswhichrequiresomeactiontoachievethegoal.TodaytheformulationofthegoalisbasedonAIagents.
Problemformulation:
Itisoneofthecorestepsofproblem-solvingwhichdecideswhatactionshouldbetakentoachievetheformulatedgoal.InAIthiscorepartisdependentuponsoftwareagentwhichconsistedofthefollowingcomponentstoformulatetheassociatedproblem.
Componentstoformulatetheassociatedproblem:
InitialState:
ThisstaterequiresaninitialstatefortheproblemwhichstartstheAIagenttowardsaspecifiedgoal.Inthisstatenewmethodsalsoinitializeproblemdomainsolvingbyaspecificclass.
Action:
Thisstageofproblemformulationworkswithfunctionwithaspecificclasstakenfromtheinitialstateandallpossibleactionsdoneinthisstage.
Transition:
Thisstageofproblemformulationintegratestheactualactiondonebythepreviousactionstageandcollectsthefinalstagetoforwardittotheirnextstage.
Goaltest:
Thisstagedeterminesthatthespecifiedgoalachievedbytheintegratedtransitionmodelornot,wheneverthegoalachievesstoptheactionandforwardintothenextstagetodeterminesthecosttoachievethegoal.
Pathcosting:
Thiscomponentofproblem-solvingnumericalassignedwhatwillbethecosttoachievethegoal.Itrequiresallhardwaresoftwareandhumanworkingcost.
Typesofsearchalgorithms:
Therearefortoomanypowerfulsearchalgorithmsouttheretofitinasinglearticle.Instead,thisarticlewilldiscuss
six
ofthefundamentalsearchalgorithms,dividedinto
two
categories,asshownbelow.
UninformedSearchAlgorithms:
Thesearchalgorithmsinthissectionhavenoadditionalinformationonthegoalnodeotherthantheoneprovidedintheproblemdefinition.Theplanstoreachthegoalstatefromthestartstatedifferonlybytheorderand/orlengthofactions.Uninformedsearchisalsocalled
Blindsearch.
Thesealgorithmscanonlygeneratethesuccessorsanddifferentiatebetweenthegoalstateandnongoalstate.
Thefollowinguninformedsearchalgorithmsarediscussedinthissection.
DepthFirstSearch
BreadthFirstSearch
UniformCostSearch
Eachofthesealgorithmswillhave:
Aproblem
graph,
containingthestartnodeSandthegoalnodeG.
A
strategy,
describingthemannerinwhichthegraphwillbetraversedtogettoG.
A
fringe,
whichisadatastructureusedtostoreallthepossiblestates(nodes)thatyoucangofromthecurrentstates.
A
tree,
thatresultswhiletraversingtothegoalnode.
Asolution
plan,
whichthesequenceofnodesfromStoG.
DepthFirstSearch
:
Depth-firstsearch(DFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Thealgorithmstartsattherootnode(selectingsomearbitrarynodeastherootnodeinthecaseofagraph)andexploresasfaraspossiblealongeachbranchbeforebacktracking.
Ituseslastin-first-outstrategyandhenceitisimplementedusingastack.
Example:
Question.
WhichsolutionwouldDFSfindtomovefromnodeStonodeGifrunonthegraphbelow?
Solution.
Theequivalentsearchtreefortheabovegraphisasfollows.AsDFStraversesthetree“deepestnodefirst”,itwouldalwayspickthedeeperbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.
Path:
S->A->B->C->G
Breadth-firstsearch(BFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Itstartsatthetreeroot(orsomearbitrarynodeofagraph,sometimesreferredtoasa‘searchkey’),andexploresalloftheneighbornodesatthepresentdepthpriortomovingontothenodesatthenextdepthlevel.
Itisimplementedusingaqueue.
Example:
Question.
WhichsolutionwouldBFSfindtomovefromnodeStonodeGifrunonthegraphbelow?
Solution.
Theequivalentsearchtreefortheabovegraphisasfollows.AsBFStraversesthetree“shallowestnodefirst”,itwouldalwayspicktheshallowerbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.
Path:
S->D->G
InformedSearchingAlgorithms
Informedsearchalgorithmscontaininformationaboutthegoalstate.Thiswillhelpinmoreefficientsearching.Itcontainsanarrayofknowledgeabouthowcloseisthegoalstatetothepresentstate,pathcost,howtoreachthegoal,etc.Informedsearchalgorithmsareusefulinlargedatabaseswhereuninformedsearchalgorithmscan’tmakeanaccurateresult.
Informedsearchalgorithmsarealsocalledheuristicsearchsinceitusestheideaofheuristics.
Theheuristicfunctionisafunctionusedtomeasuretheclosenessofthecurrentstatetothegoalstateandheuristicpropertiesareusedtofindoutthebestpossiblepathtoreachthegoalstateconcerningthepathcost.
ConsideranexampleofsearchingaplaceyouwanttovisitonGooglemaps.Thecurrentlocationandthedestinationplacearegiventothesearchalgorithmforcalculatingtheaccuratedistance,timetaken,andreal-timetrafficupdatesonthatparticularroute.Thisisexecutedusinginformedsearchalgorithms.
InformedSearchAlgorithms:
Here,thealgorithmshaveinformationonthegoalstate,whichhelpsinmoreefficientsearching.Thisinformationisobtainedbysomethingcalleda
heuristic.
Inthissection,wewilldiscussthefollowingsearchalgorithms.
GreedySearch
A*TreeSearch
A*GraphSearch
SearchHeuristics:
Inaninformedsearch,aheuristicisa
function
thatestimateshowcloseastateistothegoalstate.Forexample–Manhattandistance,Euclideandistance,etc.(Lesserthedistance,closerthegoal.)Differentheuristicsareusedindifferentinformedalgorithmsdiscussedbelow.
GreedySearch:
Ingreedysearch,weexpandthenodeclosesttothegoalnode.The“closeness”isestimatedbyaheuristich(x).
Heuristic:
Aheuristichisdefinedas-
h(x)=Estimateofdistanceofnodexfromthegoalnode.
Lowerthevalueofh(x),closeristhenodefromthegoal.
Strategy:
Expandthenodeclosesttothegoalstate,
i.e.
expandthenodewithalowerhvalue.
Example:
Question.
FindthepathfromStoGusinggreedysearch.Theheuristicvalueshofeachnodebelowthenameofthenode.
Solution.
StartingfromS,wecantraversetoA(h=9)orD(h=5).WechooseD,asithasthelowerheuristiccost.NowfromD,wecanmovetoB(h=4)orE(h=3).WechooseEwithalowerheuristiccost.Finally,fromE,wegotoG(h=0).Thisentiretraversalisshowninthesearchtreebelow,inblue.
Path:
S->D->E->G
Advantage:
Workswellwithinformedsearchproblems,withfewerstepstoreachagoal.
Disadvantage:
CanturnintounguidedDFSintheworstcase.
A*TreeSearch:
A*TreeSearch,orsimplyknownasA*Search,combinesthestrengthsofuniform-costsearchandgreedysearch.Inthissearch,theheuristicisthesummationofthecostinUCS,denotedbyg(x),andthecostinthegreedysearch,denotedbyh(x).Thesummedcostisdenotedbyf(x).
Heuristic:
ThefollowingpointsshouldbenotedwrtheuristicsinA*search.
Here,h(x)iscalledthe
forwardcost
andisanestimateofthedistanceofthecurrentnodefromthegoalnode.
And,g(x)iscalledthe
backwardcost
andisthecumulativecostofanodefromtherootnode.
A*searchisoptimalonlywhenforallnodes,theforwardcostforanodeh(x)underestimatestheactualcosth*(x)toreachthegoal.Thispropertyof
A*
heuristiciscalled
admissibility.
Admissibility:
Strategy:
Choosethenodewiththelowestf(x)value.
Example:
Question.
FindthepathtoreachfromStoGusingA*search.
Solution.
StartingfromS,thealgorithmcomputesg(x)+h(x)forallnodesinthefringeateachstep,choosingthenod
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超市柜台租赁协议
- 公司出租车承包经营协议
- 打架斗殴赔偿协议范文
- 城市房屋共有协议书
- 工程造价管理在线作业
- 工程预结算书
- 四川省成都市2024年七年级上学期期中数学试卷【附答案】
- 广西壮族自治区柳州市柳江区2024年七年级上学期期中数学试题【附答案】
- 出租场地安全管理协议书
- 2023学年齐齐哈尔市龙江县八年级语文上学期期中试卷附答案解析
- TSDPIA 05-2022 宠物猫砂通用技术规范
- 梅观高速公路政化改造交通详细规划
- 2023年湖南省中小学教师系列专业技术职称职务评审表
- 自然分娩VS剖宫产分娩
- (XXXX秋)第5章生产和服务设施布置
- 清华大学2023届中学生标准学术能力诊断性测试 2023 年 9 月测试物理试题
- 中国高考评价体系说明
- 辅导学生英语竞赛总结
- 网络新世界评课稿
- 健康中国行动知行大赛理论试题及答案
- 月老合婚真经
评论
0/150
提交评论