山西省临汾市2023-2024学年初中数学毕业考试模拟冲刺卷含解析_第1页
山西省临汾市2023-2024学年初中数学毕业考试模拟冲刺卷含解析_第2页
山西省临汾市2023-2024学年初中数学毕业考试模拟冲刺卷含解析_第3页
山西省临汾市2023-2024学年初中数学毕业考试模拟冲刺卷含解析_第4页
山西省临汾市2023-2024学年初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市2023-2024学年初中数学毕业考试模拟冲刺卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°2.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1C.323.下列分式是最简分式的是()A. B. C. D.4.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A. B. C. D.5.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm26.第24届冬奥会将于2022年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A. B. C. D.7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确8.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56° B.62° C.68° D.78°10.如图,是的外接圆,已知,则的大小为A. B. C. D.11.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)12.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.14.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.b=_________,c=_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.15.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.16.计算的结果是_____17.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.18.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.(1)求证:PC∥BD;(2)若⊙O的半径为2,∠ABP=60°,求CP的长;(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.20.(6分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)x﹣101ax2……1ax2+bx+c72…(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.21.(6分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.22.(8分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)连接AC、BC,判断△ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.23.(8分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.24.(10分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.25.(10分)如图1所示,点E在弦AB所对的优弧上,且BE为半圆,C是BE上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:①连接BE,则BE的长约为cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为cm.26.(12分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.27.(12分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别

成绩(分)

频数(人数)

频率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

请根据表格提供的信息,解答以下问题:本次决赛共有名学生参加;直接写出表中a=,b=;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.2、B【解析】

根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.【详解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中点,∴CD=12AB=12∵E,F分别为AC,AD的中点,∴EF是△ACD的中位线.∴EF=12CD=12故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.3、C【解析】解:A.,故本选项错误;B.,故本选项错误;C.,不能约分,故本选项正确;D.,故本选项错误.故选C.点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.4、D【解析】

根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.5、C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C6、B【解析】

先找出滑雪项目图案的张数,结合5张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有5张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B.【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.7、A【解析】

过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.8、C【解析】

y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y随x的增大而减小,∴一次函数y=kx+b单调递减,∴k<0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.9、C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.10、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.11、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.12、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】

先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.【详解】∵a,b分别是1的两个平方根,∴∵a,b分别是1的两个平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣1,∴a+b﹣ab=0﹣(﹣1)=1,故答案为:1.【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.14、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)【解析】

(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.【详解】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣1,∴抛物线的解析式为.∵令,解得:,,∴点B的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).设AC的解析式为y=kx﹣1.∵将点A的坐标代入得1k﹣1=0,解得k=1,∴直线AC的解析式为y=x﹣1,∴直线CP1的解析式为y=﹣x﹣1.∵将y=﹣x﹣1与联立解得,(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP2的解析式为y=﹣x+1.∵将y=﹣x+1与联立解得=﹣2,=1(舍去),∴点P2的坐标为(﹣2,5).综上所述,P的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴DF=OC=,∴点P的纵坐标是,∴,解得:x=,∴当EF最短时,点P的坐标是:(,)或(,).15、【解析】

试题解析:根据题意,得:解得:故答案为【点睛】:一个正数有2个平方根,它们互为相反数.16、【解析】【分析】根据二次根式的运算法则进行计算即可求出答案.【详解】==,故答案为.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.17、(﹣2016,+1)【解析】

据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【详解】解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴C(2,+1),第2018次变换后的三角形在x轴上方,点C的纵坐标为+1,横坐标为2﹣2018×1=﹣2016,所以,点C的对应点C′的坐标是(﹣2016,+1)故答案为:(﹣2016,+1)【点睛】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.18、【解析】【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,由题意得:x+(2x+1.82)=50,故答案为x+(2x+1.82)=50.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)+;(3)的值不变,.【解析】

(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;(2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;(3)证明△CBP∽△ABD,根据相似三角形的性质解答.【详解】(1)证明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB为⊙O的直径,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足为H,∵⊙O的半径为2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC•cos∠BCH=,BH=BC•sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不变,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【点睛】本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20、(1)y=x2﹣4x+2;(2)点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.【解析】

(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴抛物线的表达式为y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,∴点A到抛物线的距离与点B到抛物线的距离比为2:1.∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,∴点B到抛物线的距离为1,∴点B的横坐标为1+2=5,∴点B的坐标为(5,7).(1)∠BAD和∠DCO互补,理由如下:当x=0时,y=x2﹣4x+2=2,∴点A的坐标为(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴点D的坐标为(2,﹣2).过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.设直线BD的表达式为y=mx+n(m≠0),将B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直线BD的表达式为y=1x﹣2.当y=2时,有1x﹣2=2,解得:x=,∴点N的坐标为(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互补.【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.21、(1)抽样调查;12;3;(2)60;(3).【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.22、(1)抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣,)时,△PBC周长最小【解析】

(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;

(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;

(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标.【详解】(1)抛物线的解析式为y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形.理由如下:当x=0时,y=﹣x2﹣x+2=2,则C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°;(3)抛物线的对称轴为直线x=﹣,连接AC交直线x=﹣于P点,如图,∵PA=PB,∴PB+PC=PA+PC=AC,∴此时PB+PC的值最小,△PBC周长最小,设直线AC的解析式为y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,当x=﹣时,y=x+2=,则P(﹣,)∴当P点坐标为(﹣,)时,△PBC周长最小.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.23、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小【解析】

(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;(3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.【详解】(1)把A(1,0),B(8,6)代入,得解得:∴二次函数的解析式为;(1)由,得二次函数图象的顶点坐标为(4,﹣1).令y=0,得,解得:x1=1,x1=6,∴D点的坐标为(6,0);(3)二次函数的对称轴上存在一点C,使得的周长最小.连接CA,如图,∵点C在二次函数的对称轴x=4上,∴xC=4,CA=CD,∴的周长=CD+CB+BD=CA+CB+BD,根据“两点之间,线段最短”,可得当点A、C、B三点共线时,CA+CB最小,此时,由于BD是定值,因此的周长最小.设直线AB的解析式为y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:∴直线AB的解析式为y=x﹣1.当x=4时,y=4﹣1=1,∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.24、(1)证明见解析;(2)3【解析】

(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=CB∴S四边形ABCD=12(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.25、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.【解析】

(1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论