综合解析人教版数学八年级上册期中综合练习试题 (A)卷(含答案详解)_第1页
综合解析人教版数学八年级上册期中综合练习试题 (A)卷(含答案详解)_第2页
综合解析人教版数学八年级上册期中综合练习试题 (A)卷(含答案详解)_第3页
综合解析人教版数学八年级上册期中综合练习试题 (A)卷(含答案详解)_第4页
综合解析人教版数学八年级上册期中综合练习试题 (A)卷(含答案详解)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则的度数是(

)A. B. C. D.2、如图,将沿翻折,三个顶点恰好落在点处.若,则的度数为(

)A. B.C. D.3、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加(

)个螺栓A.1 B.2C.3 D.44、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA5、如图,AB和CD相交于点O,则下列结论正确的是(

)······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······二、多选题(5小题,每小题4分,共计20分)1、如图,下列条件中,能证明的是()A., B.,C., D.,2、如图,,,,则下列结论正确的是(

)A. B. C. D.3、如图,已知,在和中,如果AB=DE,BC=EF.在下列条件中能保证≌的是(

)A.∠B=∠DEF B.AC=DF C.AB∥DE D.∠A=∠D4、如图,O是直线上一点,A,B分别是,平分线上的点,于点E,于点C,于点D,则下列结论中,正确的是(

)A. B.C.与互余的角有两个 D.O是的中点5、下列说法正确的是(

)A.相等的角是对顶角B.一个四边形的四个内角中最多可以有三个锐角C.两条直线被第三条直线所截,内错角相等D.两直线相交形成的四个角相等,则这两条直线互相垂直第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、在△ABC中,将∠B、∠C按如图方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕.若∠A=80°,则∠MGE=_____°.2、在三角形的三条高中,位于三角形外的可能条数是______条.3、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=______.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.5、如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.四、解答题(5小题,每小题8分,共计40分)1、如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的长.2、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。3、如图,点E在边AC上,已知AB=DC,∠A=∠D,BC∥DE,求证:DE=AE+BC.4、如图,在图(1)中,猜想:________度.请说明你猜想的理由.如果把图1成为2环三角形,它的内角和为;图2称为2环四边形,它的内角和为.则2环四边形的内角和为________度;2环五边形的内角和为________度;2环n边形的内角和为________度.······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······5、如图,点C、F在线段BE······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明.-参考答案-一、单选题1、C【解析】【分析】根据题意求出、,根据对顶角的性质、三角形的外角性质计算即可.【详解】由题意得,,,由三角形的外角性质可知,,故选C.【考点】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.2、D【解析】【分析】根据翻折变换前后对应角不变,故∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,∵∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D.【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°是解题关键.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【解析】【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释.【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A.【考点】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键.4、D【解析】【分析】利用全等三角形的判定方法进行分析即可.【详解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键.5、A【解析】【分析】根据平行线的性质和对顶角的性质进行判断.【详解】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.【考点】本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.二、多选题1、ABC······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【分析】根据全等三角形的判定方法一一判断即可.【详解】解:A.由,,,根据可以证明,本选项符合题意;B.由,,根据能判断三角形全等,本选项符合题意;C.由,推出,因为,,根据可以证明,本选项符合题意;D.由,,,根据不可以证明,本选项不符合题意;故选:.【考点】本题考查全等三角形的判定和性质,等腰三角形的性质等知识,熟练掌握全等三角形的判定方法是解题的关键.2、ACD【解析】【分析】先证出(AAS),得,,,等量代换得,故C正确;证出(ASA),得到EM=FN,故A正确;根据ASA证出,故D正确;若,则,但不一定为,故B错误;即可得出结果.【详解】解:在和中,∴(AAS),∴,,,∵,,∴,故C选项说法正确,符合题意;在和中,∴(ASA),∴EM=FN,故A选项说法正确,符合题意;在和中,∴(ASA),故D选项说法正确,符合题意;若,则,但不一定为,故B选项说法错误,不符合题意;故选ACD.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定与性质.3、ABC【解析】【分析】非直角三角形,已知两组对应边相等,合适的判定条件有SAS,SSS.依据三角形全等的判定即可判断.【详解】这三个条件可组成SAS判定,故A正确这三个条件可组成SSS判定,故B正确由AB∥DE可得∠B=∠DEF,这三个条件可组成SAS判定,故C正确这三个条件中对应角不是夹角,ASS不构成全等三角形判定条件,故D错误综上,故选ABC【考点】本题主要考查了三角形全等的判定,熟悉三角形全等的判定条件是解决本题的关键.4、ABD【解析】【分析】根据角平分线的性质得,,等量代换得出,故A选项正确;根据角平分线性质得,,又因为即可得,故B选项正确;根据互余的定义和性质可得与互余的角有4个,故C选项错误;因为OC=OE=OD,所以点O是CD的中点,故D选项正确;即可得出结果.【详解】解:∵A,B分别是,的角平分线上的点,∴,,∵,∴,故A选项说法正确,符合题意;∵A,B分别是,的角平分线上的点,∴,,又∵,∴,故B选项说法正确,符合题意;∵,∴与互余,∵,∴,∴与互余,∵,,,∴,∴与互余,∵,,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴,∴与互余,综上,与互余的角有4个,故C选项说法错误,不符合题意;∵OC=OE=OD,∴点O是CD的中点,故D选项说法正确,符合题意;故选ABD.【考点】本题考查了角平分线的性质,邻补角,余角的性质,线段的中点,解题的关键是掌握角平分线的性质,邻补角,余角的性质,线段的中点.5、BD【解析】【分析】根据对顶角的概念、四边形的性质、平行线的性质以及垂直的概念进行判断.【详解】解:A.相等的角不一定是对顶角,而对顶角必定相等,故选项说法错误,不符合题意;B.一个四边形的四个内角中最多可以有三个锐角,若有四个内角为锐角,则内角和小于360°,故选项说法正确,符合题意;C.两条平行直线被第三条直线所截,内错角相等,故选项说法错误,不符合题意;D.两直线相交形成的四个角相等,则这四个角都是90°,即这两条直线互相垂直,故选项说法正确,符合题意;故选:BD.【考点】本题主要考查了对顶角的概念、四边形的性质、平行线的性质以及垂直的概念,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.一个四边形的四个内角中最多可以有三个锐角,若有四个内角为锐角,则内角和小于360°.三、填空题1、80【解析】【分析】由折叠的性质可知:∠B=∠MGB,∠C=∠EGC,根据三角形的内角和为180°,可求出∠B+∠C的度数,进而得到∠MGB+∠EGC的度数,问题得解.【详解】解:∵线段MN、EF为折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=80°,∴∠B+∠C=180°﹣80°=100°,∴∠MGB+∠EGC=∠B+∠C=100°,∴∠MGE=180°﹣100°=80°,故答案为:80.【考点】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,解题的关键是利用整体思想得到∠MGB+∠EGC的度数.2、0或2······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外.【详解】解:∵当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内.∴在三角形的三条高中,位于三角形外的可能条数是0或2条故答案为0或2.【考点】此题主要考查了三角形的高的位置,不同形状的三角形,它的高的情况不同,要求学生必须熟练掌握.3、6【解析】【分析】由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可.【详解】解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.故答案为:6.【考点】考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边.4、40°【解析】【详解】【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【考点】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.5、72°【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故答案为72°.【考点】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键.四、解答题1、(1)见解析;(2)【解析】【分析】(1)由角平分线的性质得DE=DF,再根据HL证明Rt△AED≌Rt△AFD,得AE=AF,从而证明结论;(2)根据DE=DF,得,代入计算即可.【详解】(1)证明:∵AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,∴DE=DF,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵DE=DF,∴AD垂直平分EF;(2)解:∵DE=DF,∴,∵AB+AC=10,∴DE=3.【考点】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点.2、(1)见解析;(2)∠CMQ=60°,不变;(3)当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°,不变.【解析】【分析】(1)利用SAS可证全等;(2)先证△ABQ≌△CAP,得出∠BAQ=∠ACP,通过角度转化,可得出∠CMQ=60°;(3)存在2种情况,一种是∠PQB=90°,另一种是∠BPQ=90°,分别根据直角三角形边直角的关系可求得t的值;(4)先证△PBC≌△ACQ,从而得出∠BPC=∠MQC,然后利用角度转化可得出∠CMQ=120°.【详解】(1)证明:在等边三角形ABC中,AB=AC,∠B=∠CAP=60°又由题中“点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不变∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(3)设时间为t,则AP=BQ=t,PB=4-t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BQ,得t=2(4-t),t=;∴当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°不变,∵在等边三角形中,AB=AC,∠B=∠CAP=60°,∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△ACQ(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°-60°=120°.【考点】本题考查动点问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论