版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市顺义区名校中考押题数学预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是()A. B. C. D.2.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+53.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.4.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关5.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣46.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB7.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10358.二次函数(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>09.的倒数是()A. B.-3 C.3 D.10.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率0.9600.9400.9550.9500.9480.9520.950下面有三个推断:①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;②根据上表,估计绿豆发芽的概率是0.95;③若n为4000,估计绿豆发芽的粒数大约为3800粒.其中推断合理的是()A.① B.①② C.①③ D.②③二、填空题(共7小题,每小题3分,满分21分)11.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.12.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________13.已知a+b=4,a-b=3,则a2-b2=____________.14.分解因式:x2–4x+4=__________.15.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.16.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.17.函数中,自变量的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.19.(5分)现有A、B两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A301200.20B603200.25设上网时间为x分钟,(1)若按方式A和方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?20.(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.21.(10分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.22.(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?23.(12分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.24.(14分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=2,CD=1,求FE的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形2、A【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.3、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.4、A【解析】【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,所以,y随x的增大而减小.因为,1<4,所以,a>b.故选A【点睛】本题考核知识点:一次函数性质.解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.5、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】14400=1.44×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、C【解析】
根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.7、B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.8、D【解析】解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;故选D.点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.9、A【解析】
先求出,再求倒数.【详解】因为所以的倒数是故选A【点睛】考核知识点:绝对值,相反数,倒数.10、D【解析】
①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.【详解】①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.故选D.【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.二、填空题(共7小题,每小题3分,满分21分)11、72°【解析】
首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键12、2.【解析】试题分析:已知方程x2-2x=0有两个相等的实数根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考点:一元二次方程根的判别式.13、1.【解析】
a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.14、(x–1)1【解析】试题分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考点:分解因式.15、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.16、小林【解析】
观察图形可知,小林的成绩波动比较大,故小林是新手.
故答案是:小林.17、【解析】
根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为:.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.三、解答题(共7小题,满分69分)18、112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.19、(1)x=270或x=520;(2)当320<x<520时,选择方式B更省钱;当x=520时,两种方式花钱一样多;当x>520时选择方式A更省钱.【解析】
(1)根据收取费用=月使用费+超时单价×超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.
(2)列不等式,求解即可得出结论.【详解】(1)当0≤x≤120时,yA与x之间的函数关系式为:y当x>120时,yA与x之间的函数关系式为:y即y当0≤x≤320时,yB与x之间的函数关系式为:y当x>320时,yB与x之间的函数关系式为:y即y方式A和方式B的收费金额相等,当0≤x≤120时,y当120≤x≤320时,0.2x+6=60,解得:x=270.当x>320时,0.2x+6=0.25x-20,解得:x=520.即x=270或x=520时,方式A和方式B的收费金额相等.(2)若上网时间x超过320分钟,0.2x+6>0.25x-20,解得320<x<520,当320<x<520时,选择方式B更省钱;0.2x+6=0.25x-20,解得x=520,当x=520时,两种方式花钱一样多;0.2x+6<0.25x-20,解得x>520,当x>520时选择方式A更省钱.【点睛】考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.20、(1)证明见解析(2)74【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即运动时间为74考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.21、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】
(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),则有,解得,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线BD的解析式为y=kx+b,代入点B、D,,解得,∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x,﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时,S有最大值,最大值为.(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HG∥y轴,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,当t2﹣t=t时,解得t1=0(舍),t2=4,此时点P(4,0).当t2﹣t=﹣t时,解得t1=0(舍),t2=,此时点P(,0).综上,点P的坐标为(4,0)或(,0).【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.22、(1)21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】
(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度乳品冷链物流服务合同
- 2024年度食堂文化艺术活动策划合同
- 2024版建筑工程施工合同范本
- 二零二四年度二手房地产居间买卖合同
- 二零二四年影视制作与版权授权合同
- 2024年度进出口报关代理操作规程合同
- 2024版食堂网络安全维护合同
- 二零二四年度社区指示牌更新与维护服务合同
- 二零二四年设备采购合同标的及设备技术参数详细描述
- 二零二四年度广告代理合同(含广告代理范围、代理费用及分成比例)2篇
- 教科版五年级科学上册《第三单元 计量时间》复习课件PPT小学优秀教学课件
- 新实用汉语课本16课
- 金融企业详细划分标准出台-共分大中小微四类型
- 南芳学校学生“双姿”日常考核方案
- 网络安全检查表完整参考模板
- 铝基合金高温相变储热材料
- 三位数乘两位数计算题360道
- 《跨文化交际》课程教学大纲(英语师范专业)
- PIV操作流程详解要点
- 在“家庭医生签约服务”工作推进会上的发言稿
- 火力发电厂生产过程-ppt课件
评论
0/150
提交评论