


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小波域的数字调制信号识别及码速率估计的中期报告LITERATUREREVIEWInrecentyears,theuseofwavelettransformfordigitalsignalprocessinghasbecomeincreasinglypopularduetoitsabilitytoanalyzesignalsinbothtimeandfrequencydomainsimultaneouslyanditsabilitytocapturebothshort-termandlong-termbehaviorofsignals.Inparticular,wavelettransformhasbeenusedformodulationrecognitionandsignalclassificationinvariouscommunicationsystems.Modulationrecognitionisanimportanttaskinmanysignalprocessingapplications,includingradar,wirelesscommunication,andsatellitecommunication.Itinvolvesidentifyingthemodulationparametersofareceivedsignal,suchasmodulationscheme,carrierfrequency,andsymbolrate.Therearevariousmethodsformodulationrecognition,suchasstatisticalclassifiers,artificialneuralnetworks,andsupportvectormachines.However,thesemethodsrequireconsiderablecomputationalresourcesandmaysufferfromoverfittingandlimitedaccuracy.Recently,wavelettransformhasbeenusedformodulationrecognitionduetoitsabilitytocapturethefrequencyandtime-varyingnatureofsignals.Inparticular,waveletpackettransform(WPT)hasbeenusedtoextractrelevantfeaturesfromthesignalformodulationrecognition.Theextractedfeaturesarethenusedasinputstomachinelearningalgorithmsforclassification.Anotherimportanttaskindigitalsignalprocessingistheestimationofthesymbolrateofareceivedsignal.Symbolrateestimationiscriticalinvariouscommunicationsystems,asitenablessynchronizationbetweenthetransmitterandreceiver.Therearevarioustechniquesforsymbolrateestimation,includingautocorrelationandmaximumlikelihoodestimators.However,thesetechniquesmaysufferfrompoorperformanceinnoisyandmultipathchannels.Wavelettransformhasbeenusedforsymbolrateestimationduetoitsabilitytocapturethetime-varyingnatureofsignals.Inparticular,continuouswavelettransform(CWT)andWPThavebeenusedforsymbolrateestimationinvariouscommunicationsystems.Theextractedfeaturesfromthewavelettransformareusedtoestimatethesymbolrateusingmaximumlikelihoodorautocorrelation-basedtechniques.PROBLEMSTATEMENTInthisproject,weaimtodevelopasystemformodulationrecognitionandsymbolrateestimationofdigitalsignalsinthewaveletdomain.Thesystemwillconsistofthefollowingcomponents:1.Wavelettransform:Thereceivedsignalwillbeanalyzedusingwavelettransformtoextracttherelevantfeatures.2.Featureextraction:TherelevantfeatureswillbeextractedfromthewaveletcoefficientsusingWPT.3.Modulationrecognition:Theextractedfeatureswillbeusedformodulationrecognitionusingmachinelearningalgorithmssuchassupportvectormachines,decisiontrees,andk-nearestneighbors.4.Symbolrateestimation:Theextractedfeatureswillbeusedforsymbolrateestimationusingmaximumlikelihoodorautocorrelation-basedtechniques.Thesystemwillbetestedonvariousdigitalsignalswithdifferentmodulationschemesandsymbolratesinordertoevaluateitsperformance.METHODOLOGYTheoverallmethodologyforthisprojectcanbedividedintothefollowingsteps:1.Datacollection:Digitalsignalswithdifferentmodulationschemesandsymbolrateswillbecollectedusingasoftware-definedradioreceiver.2.Wavelettransform:Thereceivedsignalswillbeanalyzedusingwavelettransformtoextracttherelevantfeatures.3.Featureextraction:TherelevantfeatureswillbeextractedfromthewaveletcoefficientsusingWPT.4.Modulationrecognition:Theextractedfeatureswillbeusedformodulationrecognitionusingmachinelearningalgorithmssuchassupportvectormachines,decisiontrees,andk-nearestneighbors.5.Symbolrateestimation:Theextractedfeatureswillbeusedforsymbolrateestimationusingmaximumlikelihoodorautocorrelation-basedtechniques.6.Evaluation:Theperformanceofthesystemwillbeevaluatedbycalculatingtheaccuracyofmodulationrecognitionandsymbolrateestimationonthetestsignals.EXPECTEDOUTCOMESTheexpectedoutcomesofthisprojectareasfollows:1.Developmentofasystemformodulationrecognitionandsymbolrateestimationofdigitalsignalsinthewaveletdomain.2.Evaluationoftheperformanceoftheproposedsystemonvariousdigitalsignalswithdifferentmodulationschemesandsymbolrates.3.Identificationofthemosteffective
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同协议标题格式范本
- 建设图纸设计合同协议
- 店面出租管理合同协议
- 上海代缴社保合同协议
- app入驻商城合同协议
- 废油合同协议
- 废钢居间服务合同协议
- 驾车卖货旅游合同协议
- 废锅炉拆除买卖合同协议
- 合同追加保密协议范本
- 心脏康复护理专家共识PPT
- 汽车充电站生产安全事故隐患清单-有依据
- 浙江省杭州市萧山区第二学期六年级语文期中试题(含答案)
- 大学生心理健康-厦门大学中国大学mooc课后章节答案期末考试题库2023年
- 《中餐烹饪美学》课后答案
- 2020农村人居环境综合整治项目可行性研究报告
- 《工业控制网络及组态技术》教案
- 07FG04 钢筋混凝土门框墙(含更正说明)
- 流体力学(清华大学张兆顺54讲) PPT课件 76-2-4流体力学(中)(第二章 流体运动学)
- 基于超限学习机的无设备定位方法研究
- 110kV输变电工程施工组织设计
评论
0/150
提交评论