基于超限学习机的无设备定位方法研究_第1页
基于超限学习机的无设备定位方法研究_第2页
基于超限学习机的无设备定位方法研究_第3页
基于超限学习机的无设备定位方法研究_第4页
基于超限学习机的无设备定位方法研究_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于超限学习机的无设备定位方法研究基于超限学习机的无设备定位方法研究

摘要

无线定位技术因其方便快捷、无需硬件部署、精度高等优点而受到广泛关注。本文提出一种基于超限学习机的无设备定位方法,其中超限学习机被用于实现非线性函数映射,通过收集Wi-Fi信号强度和位置数据作为训练集,并以压缩感知的方式实现极限降维,来进行定位。为了进一步提升精度,本文引入了局部权重贡献方法来降低信号强度测量误差对定位结果的影响。

本文还在室内环境下进行了一系列实验,比较了所提出的方法与传统的KNN定位算法和基于支持向量机的定位方法。实验结果表明,所提出的无设备定位方法具有较高的定位精度和更好的鲁棒性。

关键词:超限学习机;无设备定位;Wi-Fi;压缩感知;局部权重贡献。

Abstract

Wirelesspositioningtechnologyhasattractedwidespreadattentionduetoitsconvenience,nohardwaredeployment,andhighaccuracy.Inthispaper,adevice-freepositioningmethodbasedonextremelearningmachine(ELM)isproposed,inwhichtheELMisusedtoachievenon-linearfunctionmapping.Wi-Fisignalstrengthandlocationdataarecollectedastrainingsets,andextremedimensionreductionisachievedbycompressivesensingtoperformpositioning.Inordertofurtherimprovetheaccuracy,thispaperintroducesthelocalweightcontributionmethodtoreducetheimpactofmeasurementerrorsonthepositioningresults.

Inaddition,aseriesofexperimentswerecarriedoutinanindoorenvironmenttocomparetheproposedmethodwiththetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethod.Theexperimentalresultsshowthattheproposeddevice-freepositioningmethodhashigherpositioningaccuracyandbetterrobustness.

Keywords:Extremelearningmachine(ELM);device-freepositioning;Wi-Fi;compressivesensing;localweightcontributionDevice-freepositioninghasbecomeanimportantresearchareaduetoitswiderangeofapplicationssuchassecurity,healthcare,andhomeautomation.Inthisstudy,anoveldevice-freepositioningalgorithmbasedonextremelearningmachine(ELM)andcompressivesensingwasproposed.Theproposedalgorithmutilizesthereceivedsignalstrength(RSS)ofWi-Fisignalstoestimatethepositionofatargetuserwithouttheneedforanyadditionaldevicesorsensors.

TheELMalgorithmwasutilizedtotrainalocalweightcontributionmatrix,whichisusedtodeterminethecontributionofeachsignalstrengthmeasurementtothepositioningresults.CompressivesensingwasusedtoreducethedimensionalityoftheRSSmatrix,thusreducingthecomputationalcomplexityandimprovingtheaccuracyofthealgorithm.

Aseriesofexperimentswereconductedinanindoorenvironmenttoevaluatetheproposeddevice-freepositioningmethod.TheexperimentalresultsshowedthattheproposedmethodoutperformedthetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethodintermsofaccuracyandrobustness.

Inconclusion,thisstudyproposesanoveldevice-freepositioningalgorithmbasedonELMandcompressivesensing,whichcanaccuratelyestimatethepositionofatargetuserusingonlyWi-Fisignals.Themethodhaspotentialforawiderangeofapplications,includinghomeautomation,healthcare,andsecurityTherearesomelimitationsandfuturedirectionsfortheproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensing.First,thealgorithmassumesthattheenvironmentisstaticduringthepositioningprocess.However,inreal-worldscenarios,theenvironmentmaychangedynamicallyovertime,whichcouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanfocusondevelopingdynamicalgorithmsthatcanadapttochangingenvironments.

Second,thealgorithmisbasedonWi-Fisignals,whichmaynotbeavailableinallenvironments.Insuchcases,alternativesignals,suchasBluetoothorRFID,couldbeused.Futureresearchcanexplorehowtheproposedalgorithmcouldbeadaptedtoworkwithothertypesofsignals.

Third,theproposedalgorithmrequiresatrainingphasetobuildthedictionarymatrix.Thisprocesscanbetime-consumingandmaynotbefeasibleinsomereal-worldscenarios.Therefore,futureresearchcanfocusondevelopingalgorithmsthatdonotrequireatrainingphase.

Fourth,theproposedalgorithmcurrentlyonlyworksforsingle-userscenarios.Inmulti-userenvironments,interferencebetweenuserscouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanexplorehowthealgorithmcouldbeadaptedtoworkinmulti-userscenarios.

Finally,whiletheproposedalgorithmoutperformedtraditionalpositioningalgorithmsintermsofaccuracyandrobustness,thereisstillroomforimprovement.Futureresearchcanfocusondevelopingmoreadvancedalgorithmsthatfurtherimprovetheaccuracyandefficiencyofdevice-freepositioningsystems.

Overall,theproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensinghasthepotentialtorevolutionizeindoorpositioningsystems.Withfurtherdevelopmentandresearch,itcouldenableawiderangeofapplicationsthatbenefitsocietyOnepotentialapplicationofdevice-freepositioningsystemsisinthefieldofhealthcare.Hospitalstaffneedtokeeptrackofpatientsandmedicalequipmentwithinthehospitalenvironment,andaccurateindoorpositioningcanhelptoincreaseefficiencyandreduceerrors.Forexample,adevice-freepositioningsystemcouldbeusedtotrackthemovementofahospitalbedandalertstaffwhenitreachesacertainlocation,suchastheoperatingroom.Itcouldalsobeusedtotrackthelocationofmedicalstaff,ensuringthattheyareinthecorrectareatoprovidetherequiredmedicalcare.

Anotherpotentialapplicationisinthefieldofsecurity.Traditionalsecuritysystemssuchasvideocamerasmaybeineffectiveincertainsituations,suchaswhentheintruderiswearingamaskorifthecamera'sviewisblocked.Adevice-freepositioningsystemcandetectthepresenceofahumanbeingeveniftheyarenotcarryinganyelectronicdevices,enablingsecuritypersonneltoidentifytheintruderandtakeappropriateaction.

Moreover,device-freepositioningsystemscanalsobeusedinenvironmentalmonitoring.Theycandetectandtrackthemovementofwildlifeinnaturalhabitatswithoutdisturbingthem,providingvaluableinformationtoresearchersandconservationists.Theycanalsobeusedtomonitorthemovementofpeopleindisasterzones,enablingfirstresponderstolocatesurvivorsandprovideassistancemoreefficiently.

Finally,device-freepositioningsystemscanbeusedinretailenvironments.Theycanprovidevaluableinsightsintocustomerbehavior,suchashowtheynavigatethestoreandwhichitemsaremostpopular.Thisinformationcanbeusedtoimprovestorelayoutandproductplacement,leadingtoincreasedsalesandcustomersatisfaction.

Inconclusion,device-freepositioningsystemshaveenormouspotentialtoenhance

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论