




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于超限学习机的无设备定位方法研究基于超限学习机的无设备定位方法研究
摘要
无线定位技术因其方便快捷、无需硬件部署、精度高等优点而受到广泛关注。本文提出一种基于超限学习机的无设备定位方法,其中超限学习机被用于实现非线性函数映射,通过收集Wi-Fi信号强度和位置数据作为训练集,并以压缩感知的方式实现极限降维,来进行定位。为了进一步提升精度,本文引入了局部权重贡献方法来降低信号强度测量误差对定位结果的影响。
本文还在室内环境下进行了一系列实验,比较了所提出的方法与传统的KNN定位算法和基于支持向量机的定位方法。实验结果表明,所提出的无设备定位方法具有较高的定位精度和更好的鲁棒性。
关键词:超限学习机;无设备定位;Wi-Fi;压缩感知;局部权重贡献。
Abstract
Wirelesspositioningtechnologyhasattractedwidespreadattentionduetoitsconvenience,nohardwaredeployment,andhighaccuracy.Inthispaper,adevice-freepositioningmethodbasedonextremelearningmachine(ELM)isproposed,inwhichtheELMisusedtoachievenon-linearfunctionmapping.Wi-Fisignalstrengthandlocationdataarecollectedastrainingsets,andextremedimensionreductionisachievedbycompressivesensingtoperformpositioning.Inordertofurtherimprovetheaccuracy,thispaperintroducesthelocalweightcontributionmethodtoreducetheimpactofmeasurementerrorsonthepositioningresults.
Inaddition,aseriesofexperimentswerecarriedoutinanindoorenvironmenttocomparetheproposedmethodwiththetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethod.Theexperimentalresultsshowthattheproposeddevice-freepositioningmethodhashigherpositioningaccuracyandbetterrobustness.
Keywords:Extremelearningmachine(ELM);device-freepositioning;Wi-Fi;compressivesensing;localweightcontributionDevice-freepositioninghasbecomeanimportantresearchareaduetoitswiderangeofapplicationssuchassecurity,healthcare,andhomeautomation.Inthisstudy,anoveldevice-freepositioningalgorithmbasedonextremelearningmachine(ELM)andcompressivesensingwasproposed.Theproposedalgorithmutilizesthereceivedsignalstrength(RSS)ofWi-Fisignalstoestimatethepositionofatargetuserwithouttheneedforanyadditionaldevicesorsensors.
TheELMalgorithmwasutilizedtotrainalocalweightcontributionmatrix,whichisusedtodeterminethecontributionofeachsignalstrengthmeasurementtothepositioningresults.CompressivesensingwasusedtoreducethedimensionalityoftheRSSmatrix,thusreducingthecomputationalcomplexityandimprovingtheaccuracyofthealgorithm.
Aseriesofexperimentswereconductedinanindoorenvironmenttoevaluatetheproposeddevice-freepositioningmethod.TheexperimentalresultsshowedthattheproposedmethodoutperformedthetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethodintermsofaccuracyandrobustness.
Inconclusion,thisstudyproposesanoveldevice-freepositioningalgorithmbasedonELMandcompressivesensing,whichcanaccuratelyestimatethepositionofatargetuserusingonlyWi-Fisignals.Themethodhaspotentialforawiderangeofapplications,includinghomeautomation,healthcare,andsecurityTherearesomelimitationsandfuturedirectionsfortheproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensing.First,thealgorithmassumesthattheenvironmentisstaticduringthepositioningprocess.However,inreal-worldscenarios,theenvironmentmaychangedynamicallyovertime,whichcouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanfocusondevelopingdynamicalgorithmsthatcanadapttochangingenvironments.
Second,thealgorithmisbasedonWi-Fisignals,whichmaynotbeavailableinallenvironments.Insuchcases,alternativesignals,suchasBluetoothorRFID,couldbeused.Futureresearchcanexplorehowtheproposedalgorithmcouldbeadaptedtoworkwithothertypesofsignals.
Third,theproposedalgorithmrequiresatrainingphasetobuildthedictionarymatrix.Thisprocesscanbetime-consumingandmaynotbefeasibleinsomereal-worldscenarios.Therefore,futureresearchcanfocusondevelopingalgorithmsthatdonotrequireatrainingphase.
Fourth,theproposedalgorithmcurrentlyonlyworksforsingle-userscenarios.Inmulti-userenvironments,interferencebetweenuserscouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanexplorehowthealgorithmcouldbeadaptedtoworkinmulti-userscenarios.
Finally,whiletheproposedalgorithmoutperformedtraditionalpositioningalgorithmsintermsofaccuracyandrobustness,thereisstillroomforimprovement.Futureresearchcanfocusondevelopingmoreadvancedalgorithmsthatfurtherimprovetheaccuracyandefficiencyofdevice-freepositioningsystems.
Overall,theproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensinghasthepotentialtorevolutionizeindoorpositioningsystems.Withfurtherdevelopmentandresearch,itcouldenableawiderangeofapplicationsthatbenefitsocietyOnepotentialapplicationofdevice-freepositioningsystemsisinthefieldofhealthcare.Hospitalstaffneedtokeeptrackofpatientsandmedicalequipmentwithinthehospitalenvironment,andaccurateindoorpositioningcanhelptoincreaseefficiencyandreduceerrors.Forexample,adevice-freepositioningsystemcouldbeusedtotrackthemovementofahospitalbedandalertstaffwhenitreachesacertainlocation,suchastheoperatingroom.Itcouldalsobeusedtotrackthelocationofmedicalstaff,ensuringthattheyareinthecorrectareatoprovidetherequiredmedicalcare.
Anotherpotentialapplicationisinthefieldofsecurity.Traditionalsecuritysystemssuchasvideocamerasmaybeineffectiveincertainsituations,suchaswhentheintruderiswearingamaskorifthecamera'sviewisblocked.Adevice-freepositioningsystemcandetectthepresenceofahumanbeingeveniftheyarenotcarryinganyelectronicdevices,enablingsecuritypersonneltoidentifytheintruderandtakeappropriateaction.
Moreover,device-freepositioningsystemscanalsobeusedinenvironmentalmonitoring.Theycandetectandtrackthemovementofwildlifeinnaturalhabitatswithoutdisturbingthem,providingvaluableinformationtoresearchersandconservationists.Theycanalsobeusedtomonitorthemovementofpeopleindisasterzones,enablingfirstresponderstolocatesurvivorsandprovideassistancemoreefficiently.
Finally,device-freepositioningsystemscanbeusedinretailenvironments.Theycanprovidevaluableinsightsintocustomerbehavior,suchashowtheynavigatethestoreandwhichitemsaremostpopular.Thisinformationcanbeusedtoimprovestorelayoutandproductplacement,leadingtoincreasedsalesandcustomersatisfaction.
Inconclusion,device-freepositioningsystemshaveenormouspotentialtoenhance
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权转让合同男方提出解除合作
- 中小企业合同保障宣言2025
- 山东省单县2025届数学五年级第二学期期末复习检测试题含答案
- 内蒙古自治区鄂尔多斯市达标名校2025届初三下期第一次月考试题含解析
- 井陉矿区2025年数学五下期末质量跟踪监视模拟试题含答案
- 智慧农业技术农业领域的新篇章与新机遇
- 农村集体土地承包合同示例
- 统编版二年级语文下册名校真题卷(含答案)
- 无子女双方协商离婚协议书
- 2025预制管桩购买合同书
- 供应链管理师技能竞赛理论考试题及答案
- (新版)糖尿病知识竞赛考试题库300题(含答案)
- 新工人进场三级教育表格
- 写字楼保洁人员培训方案(技术方案)
- (附着式升降脚手架)设备设施风险分级管控清单
- 外协救援服务协议
- 工业机器人的发展历史
- DL∕T 2547-2022 交流断面失电监测装置技术规范
- 高龄患者的麻醉管理策略
- 小小科学家《物理》模拟试卷A(附答案)
- 2024年安徽蚌埠市国有资本运营控股集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论