下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章空间向量与立体几何3.1空间向量及其运算3.1.2空间向量的数乘运算课后篇巩固提升1.下列说法正确的是()A.在平面内共线的向量在空间不一定共线B.在空间共线的向量在平面内不一定共线C.在平面内共线的向量在空间一定不共线D.在空间共线的向量在平面内一定共线答案D2.已知MA,MB是空间两个不共线的向量,MC=3MA2MB,那么必有(A.MA,B.MB,C.MA,D.MA,答案C3.如图,在平行六面体ABCDA1B1C1D1中,点E为A1D1的中点,设AB=a,AD=b,AA1=c,则CE=(A.a12b+c B.a12bC.a12bc D.a+12解析根据向量的三角形法则得到CE=AE-AC=AA1+A1E(AB+BC)=c+答案A4.在空间四边形OABC中,G是△ABC的重心,若OA=a,OB=b,OC=c,则OG等于()A.12a+12b+B.13a+13b+C.a+b+cD.3a+3b+3c解析由G是△ABC的重心,则CG=OG=OC+CG=OC+=OC+13=13OC+13OA+13答案B5.已知空间任意一点O和不共线的三点A,B,C,若OD=mOA+nOB+pOC(m,n,p∈R),则“A,B,C,D四点共面”是“m=32,n=12,p=1”的(A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析由题意,空间中四点A,B,C,D,若OD=mOA+nOB+pOC(m,n,p∈R).若A,B,C,D四点共面,根据空间向量的共面定理,只需m+n+p=1,又由m=32,n=12,p=1,可得所以“m=32,n=12,p=1”时,A,B,C,D四点共面,反之不一定成立,既充分性不成立.所以“A,B,C,D四点共面”是“m=32,n=12,p=1”故选A.答案A6.已知正方体ABCDA1B1C1D1中,P,M为空间任意两点,如果有PM=PB1+7BA+6AA14A1A.在平面BAD1内 B.在平面BA1D内C.在平面BA1D1内 D.在平面AB1C1内解析由于PM=PB1+7BA+6AA14A1D1=PB1+BA+6BA14A1D1=PB1+B1A1+6B答案C7.已知A,B,C三点不共线,O是平面ABC外任一点,若由OP=15OA+23OB+λOC确定的一点P与A,B,C解析因为点P与A,B,C三点共面,所以15+23+λ=1,解得答案28.设e1,e2是空间两个不共线的向量,已知AB=e1+ke2,BC=5e1+4e2,DC=e12e2,且A,B,D三点共线,则实数k的值是.
解析因为BC=5e1+4e2,DC=e12e2,所以BD=BC+CD=(5e1+4e2)+(e1+2e2)=6e1+又因为A,B,D三点共线,所以AB=λBD,所以e1+ke2=λ(6e1+6e2).因为e1,e2是不共线向量,所以1=6λ,k=6答案19.在长方体ABCDA1B1C1D1中,点M为DD1的中点,点N在AC上,且AN∶NC=2∶1,求证:A1N证明∵A1A1AN=∴A1N=AN-AA1=∴A1N10.如图,已知空间四边形ABCD,E,H分别是边AB,AD的中点,F,G分别是边CB,CD上的点,且CF=23CB,CG=证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 14496-15:2024 EN Information technology - Coding of audio-visual objects - Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO base
- GB/T 44681-2024风能发电系统风力发电场后评价及改造技术规范
- GB/T 44568-2024保温材料压缩蠕变的测定
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 吉林省长春市九台区2024-2025学年七年级上学期期中教学质量监测地理试题(含答案)
- 2024年度云南省高校教师资格证之高等教育法规押题练习试卷A卷附答案
- 2024-2025学年天津市河北区美术中学九年级(上)第一次月考数学试卷(无答案)
- 低空经济产业园经济效益评估
- 低空经济公司运营管理报告
- 赣南师范大学《美术基础与欣赏》2023-2024学年第一学期期末试卷
- 二次结构工程技术标
- 半导体-硅片生产工艺流程及工艺注意要点
- 工地安全日志范例52007
- 《湖南省住宅工程质量通病防治技术规程》
- 服装质量控制及流程(共6页)
- 昆明地区废弃花卉秸秆资源化利用现状及建议
- 煤巷掘锚一体机化快速掘进技术与应用分析
- 有理数全章复习教案
- 《2021国标暖通图集资料》14K117-2 伞形风帽
- 低压配电房设备操作流程
- 机电管理安全技术措施及应急预案
评论
0/150
提交评论