江苏省无锡市塘南中学高二数学理摸底试卷含解析_第1页
江苏省无锡市塘南中学高二数学理摸底试卷含解析_第2页
江苏省无锡市塘南中学高二数学理摸底试卷含解析_第3页
江苏省无锡市塘南中学高二数学理摸底试卷含解析_第4页
江苏省无锡市塘南中学高二数学理摸底试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市塘南中学高二数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,则(

)A.[1,2] B.[1,5] C.[0,5) D.[-1,2]参考答案:A【分析】根据二次函数值域求解方法求出集合,根据交集定义求得结果.【详解】

本题正确选项:【点睛】本题考查集合运算中的交集运算,涉及到二次函数值域的求解,属于基础题.2.如图,将一个各面都凃了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X,则X的均值E(X)=(

)A.

B.

C.

D.参考答案:B3.一个正三角形的外接圆的半径为1,向该圆内随机投一点P,点P恰好落在正三角形内的概率是

).

.

.

.

参考答案:A4.函数(实数t为常数,且)的图象大致是(

)A. B.C. D.参考答案:B【分析】先由函数零点的个数排除选项A,C;再结合函数的单调性即可得到选项.【详解】由f(x)=0得x2+tx=0,得x=0或x=-t,即函数f(x)有两个零点,排除A,C,函数的导数f′(x)=(2x+t)ex+(x2+tx)ex=[x2+(t+2)x+t]ex,当x→-∞时,f′(x)>0,即在x轴最左侧,函数f(x)为增函数,排除D,故选:B.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.5.已知a>0,b>0,,若不等式2a+b≥4m恒成立,则m的最大值为(

)A.10 B.9 C.8 D.7参考答案:B【考点】基本不等式在最值问题中的应用.【专题】计算题;不等式的解法及应用.【分析】利用2a+b=4(2a+b)(),结合基本不等式,不等式2a+b≥4m恒成立,即可求出m的最大值.【解答】解:∵a>0,b>0,∴2a+b>0∵,∴2a+b=4(2a+b)()=4(5+)≥36,∵不等式2a+b≥4m恒成立,∴36≥4m,∴m≤9,∴m的最大值为9,故选:B.【点评】本题主要考查了恒成立问题与最值的求解的相互转化,解题的关键是配凑基本不等式成立的条件.6.设x是实数,则“x>0”是“|x|>0”的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件

D.既不充分也不必要条件参考答案:A略7.抛物线上两点、关于直线对称,且,则等于(

)A.

B.

C.

D.参考答案:D略8.积分(

).A.

B.

C.

D.

参考答案:B9.过点(4,0)和点(0,3)的直线的倾斜角为

A.

B.

C.

D.参考答案:B10.双曲线x2﹣4y2=1的焦距为()A. B. C. D.参考答案:C【考点】双曲线的简单性质.【分析】将所给的双曲线方程化成标准方程,根据双曲线中的a,b,c的关系求解c,焦距2c即可.【解答】解:双曲线x2﹣4y2=1,化成标准方程为:∵a2+b2=c2∴c2==解得:c=所以得焦距2c=故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.已知下列几个命题:①已知F1、F2为两定点,=4,动点M满足,则动点M的轨迹是椭圆。②一个焦点为且与双曲线有相同的渐近线的双曲线标准方程是③“若=b,则a2=ab”的否命题。④若一个动圆的圆心在抛物线上,且动圆恒与直线相切,则动圆必过定点。其中真命题有____________参考答案:②④略12.P在曲线上移动,在点P处的切线的斜率为k,则k的取值范围是

.参考答案:k≥1【考点】利用导数研究曲线上某点切线方程.【分析】利用导数的几何意义求出切线的斜率,再由二次函数的值域求法即可得到.【解答】解:设切点P(x0,y0),在此点的切线的斜率为k.∵,∴f′(x)=3x2+1,∴f′(x0)=3x02+1,(x0∈R).∴斜率k=3x02+1≥1,故答案为:k≥1.13.定义在R上的奇函数满足则=

参考答案:-214.已知下列四个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线与圆相切;④设,若函数有大于零的极值点,则。其中真命题的序号是:

。参考答案:①③④略15.下面几种推理是演绎推理的是:

(1)两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=1800;(2)泰师附中高二(1)班有55人,(2)班有54人,(3)班有52人,由此得高二所有各班级人数超过50人;(3)由平面三角形的性质推出空间四面体的性质。参考答案:演绎推理选1

略16.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是

.参考答案:1﹣【考点】几何概型.【专题】概率与统计.【分析】分别求出对应事件对应的面积,利用几何概型的概率公式即可得到结论.【解答】解:∵三角形的三边长分别是5,5,6,∴三角形的高AD=4,则三角形ABC的面积S=,则该蚂蚁距离三角形的三个顶点的距离均超过2,对应的区域为图中阴影部分,三个小扇形的面积之和为一个整圆的面积的,圆的半径为2,则阴影部分的面积为S1=12﹣=12﹣2π,则根据几何概型的概率公式可得所求是概率为,故答案为:1﹣.【点评】本题主要考查几何概型的概率计算,根据条件求出相应的面积是解决本题的关键.17.要使的图像不经过第一象限,则实数m的取值范围__________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.(Ⅰ)证明:∠ADE=∠AED;(Ⅱ)若AC=AP,求的值.参考答案:【考点】弦切角;相似三角形的性质.【分析】(Ⅰ)根据弦切角定理,得到∠BAP=∠C,结合PE平分∠APC,可得∠BAP+∠APD=∠C+∠CPE,最后用三角形的外角可得∠ADE=∠AED;(Ⅱ)根据AC=AP得到∠APC=∠C,结合(I)中的结论可得∠APC=∠C=∠BAP,再在△APC中根据直径BC得到∠PAC=90°+∠BAP,利用三角形内角和定理可得.利用直角三角形中正切的定义,得到,最后通过内角相等证明出△APC∽△BPA,从而.【解答】解:(Ⅰ)∵PA是切线,AB是弦,∴∠BAP=∠C.又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE.∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,∴∠ADE=∠AED.…(Ⅱ)由(Ⅰ)知∠BAP=∠C,∵∠APC=∠BPA,∵AC=AP,∴∠APC=∠C∴∠APC=∠C=∠BAP.由三角形内角和定理可知,∠APC+∠C+∠CAP=180°.∵BC是圆O的直径,∴∠BAC=90°.∴∠APC+∠C+∠BAP=180°﹣90°=90°.∴.在Rt△ABC中,,即,∴.∵在△APC与△BPA中∠BAP=∠C,∠APB=∠CPA,∴△APC∽△BPA.∴.∴.

…19.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?参考答案:设公司每天生产甲种产品x桶,乙种产品y桶,公司每天共可获得的利润为z元,依题意,得

┄┈┈4分目标函数为z=300x+400y可行域为如图所示的阴影部分,┄┈┈8分目标函数z=300x+400y可变形为y=-x+,这是随z变化的一族平行直线。由解得即A(4,4).所以目标函数z=300x+400y过点A时取得最大值为zmax=1200+1600=2800(元).所以每天生产的甲、乙两种产品都为4桶,公司共可获得的最大利润是2800元。┈12分20.已知某产品出厂前需要依次通过三道严格的审核程序,三道审核程序通过的概率依次为,,,每道程序是相互独立的,且一旦审核不通过就停止审核,该产品只有三道程序都通过才能出厂销售(Ⅰ)求审核过程中只通过两道程序的概率;(Ⅱ)现有3件该产品进入审核,记这3件产品可以出厂销售的件数为X,求X的分布列及数学期望.参考答案:【考点】CH:离散型随机变量的期望与方差.【分析】(I)根据相互独立事件的概率乘法公式计算;(II)求出每一件产品通过审查的概率,利用二项分布的概率公式和性质得出分布列和数学期望.【解答】解:(I)审核过程中只通过两道程序的概率为P==.(II)一件产品通过审查的概率为=,∴X~B(3,),故X的可能取值为0,1,2,3,且P(X=0)=(1﹣)3=,P(X=1)=??(1﹣)2=,P(X=2)=()2?(1﹣)=P(X=3)=()3=.∴X的分布列为:X0123PE(X)=3×=.21.已知数列{an}是等差数列,.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若从数列{an}中依次取出第2项,第4项,第8项,,第2n项,按原来的顺序组成一个新数列,求.参考答案:解:(Ⅰ)由等差数列{an}中,,得,.(Ⅱ)由(1)知,,,…,.22.已知函数,,.(1)求曲线在点(1,0)处的切线方程;(2)若不等式对恒成立,求a的取值范围;(3)若直线与曲线相切,求a的值.参考答案:(1)(2)(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论