版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
March2024
Mcsey
Quartery
AgenerativeAIreset:
Rewiringtoturnpotentialintovaluein2024
ThegenerativeAIpayoffmayonlycomewhencompaniesdodeeperorganizationalsurgeryontheirbusiness.
byEricLamarre,AlexSingla,AlexanderSukharevsky,andRodneyZemmel
It’stimeforagenerativeAI(genAI)reset.Theinitialenthusiasmandflurryofactivityin2023isgivingwaytosecondthoughtsandrecalibrationsascompaniesrealizethatcapturinggenAI’senormouspotentialvalueisharderthanexpected.
With2024shapinguptobetheyearforgenAItoproveitsvalue,companiesshould
keepinmindthehardlessonslearnedwithdigitalandAItransformations:competitiveadvantagecomesfrombuildingorganizationalandtechnologicalcapabilitiestobroadlyinnovate,deploy,andimprovesolutionsatscale—ineffect,rewiringthebusinessfor
distributeddigitalandAIinnovation.
CompanieslookingtoscoreearlywinswithgenAIshouldmovequickly.ButthosehopingthatgenAIoffersashortcutpastthetough—andnecessary—organizationalsurgery
arelikelytomeetwithdisappointingresults.Launchingpilotsis(relatively)easy;gettingpilotstoscaleandcreatemeaningfulvalueishardbecausetheyrequireabroadsetofchangestothewayworkactuallygetsdone.
Let’sbrieflylookatwhatthishasmeantforonePacificregiontelecommunications
company.ThecompanyhiredachiefdataandAIofficerwithamandateto“enablethe
organizationtocreatevaluewithdataandAI.”ThechiefdataandAIofficerworkedwith
thebusinesstodevelopthestrategicvisionandimplementtheroadmapfortheusecases.Afterascanofdomains(thatis,customerjourneysorfunctions)andusecaseopportunitiesacrosstheenterprise,leadershipprioritizedthehome-servicing/maintenancedomainto
pilotandthenscaleaspartofalargersequencingofinitiatives.Theytargeted,inparticular,thedevelopmentofagenAItooltohelpdispatchersandserviceoperatorsbetterpredict
thetypesofcallsandpartsneededwhenservicinghomes.
2
Leadershipputinplacecross-functionalproductteamswithsharedobjectivesand
incentivestobuildthegenAItool.Aspartofanefforttoupskilltheentireenterpriseto
betterworkwithdataandgenAItools,theyalsosetupadataandAIacademy,which
thedispatchersandserviceoperatorsenrolledinaspartoftheirtraining.Toprovide
thetechnologyanddataunderpinningsforgenAI,thechiefdataandAIofficeralso
selectedalargelanguagemodel(LLM)andcloudproviderthatcouldmeettheneedsofthedomainaswellasserveotherpartsoftheenterprise.ThechiefdataandAIofficer
alsooversawtheimplementationofadataarchitecturesothatthecleanandreliable
data(includingservicehistoriesandinventorydatabases)neededtobuildthegenAItoolcouldbedeliveredquicklyandresponsibly.
OurbookRewired:TheMcKinseyGuidetoOutcompetingintheAgeofDigitalandAI(Wiley,June2023)providesadetailedmanualonthesixcapabilitiesneededtodeliverthekindof
broadchangethatharnessesdigitalandAItechnology.Inthisarticle,wewillexplorehowtoextendeachofthosecapabilitiestoimplementasuccessfulgenAIprogramatscale.Whilerecognizingthatthesearestillearlydaysandthatthereismuchmoretolearn,ourexperiencehasshownthatbreakingopenthegenAIopportunityrequirescompaniestorewirehowtheyworkinthefollowingways.
FigureoutwheregenAIcopilotscangiveyouarealcompetitiveadvantage
ThebroadexcitementaroundgenAIanditsrelativeeaseofusehasledtoaburstof
experimentationacrossorganizations.Mostoftheseinitiatives,however,won’tgenerateacompetitiveadvantage.Onebank,forexample,boughttensofthousandsofGitHub
Copilotlicenses,butsinceitdidn’thaveaclearsenseofhowtoworkwiththetechnology,progresswasslow.Anotherunfocusedeffortweoftenseeiswhencompaniesmove
toincorporategenAIintotheircustomerservicecapabilities.Customerserviceisa
commoditycapability,notpartofthecorebusiness,formostcompanies.WhilegenAImighthelpwithproductivityinsuchcases,itwon’tcreateacompetitiveadvantage.
Tocreatecompetitiveadvantage,companiesshouldfirstunderstandthedifference
betweenbeinga“taker”(auserofavailabletools,oftenviaAPIsandsubscriptionservices),a“shaper”(anintegratorofavailablemodelswithproprietarydata),anda“maker”(abuilderofLLMs).Fornow,themakerapproachistooexpensiveformostcompanies,sothesweetspotforbusinessesisimplementingatakermodelforproductivityimprovementswhile
buildingshaperapplicationsforcompetitiveadvantage.
MuchofgenAI’snear-termvalueiscloselytiedtoitsabilitytohelppeopledotheir
currentjobsbetter.Inthisway,genAItoolsactascopilotsthatworksidebysidewithanemployee,creatinganinitialblockofcodethatadevelopercanadapt,forexample,ordraftingarequisitionorderforanewpartthatamaintenanceworkerinthefield
canreviewandsubmit(seesidebar“CopilotexamplesacrossthreegenerativeAI
archetypes”).Thismeanscompaniesshouldbefocusingonwherecopilottechnologycanhavethebiggestimpactontheirpriorityprograms.
3
Copilotexamplesacrossthree
generativeAI
archetypes
•“Taker”copilotshelp
realestatecustomers
siftthroughproperty
optionsandfindthemostpromisingone,write
codeforadeveloper,
andsummarizeinvestor
transcripts.
•“Shaper”copilotsprovide
recommendationstosales
repsforupsellingcustomersbyconnectinggenerativeAItoolstocustomerrelationshipmanagementsystems,
financialsystems,and
customerbehaviorhistories;createvirtualassistantsto
personalizetreatmentsforpatients;andrecommendsolutionsformaintenanceworkersbasedonhistoricaldata.
•“Maker”copilotsarefoundationmodels
thatlabscientistsat
pharmaceuticalcompaniescanusetofindandtest
newandbetterdrugs
morequickly.
Someindustrialcompanies,forexample,haveidentifiedmaintenanceasacriticaldomainfortheirbusiness.
Reviewingmaintenancereportsandspendingtimewithworkersonthefrontlinescanhelpdeterminewhere
agenAIcopilotcouldmakeabigdifference,suchas
inidentifyingissueswithequipmentfailuresquickly
andearlyon.AgenAIcopilotcanalsohelpidentify
rootcausesoftruckbreakdownsandrecommend
resolutionsmuchmorequicklythanusual,aswellas
actasanongoingsourceforbestpracticesorstandardoperatingprocedures.
Thechallengewithcopilotsisfiguringouthowto
generaterevenuefromincreasedproductivity.In
thecaseofcustomerservicecenters,forexample,companiescanstoprecruitingnewagentsanduseattritiontopotentiallyachieverealfinancialgains.
Definingtheplansforhowtogeneraterevenuefromtheincreasedproductivityupfront,therefore,iscrucialto
capturingthevalue.
Upskillthetalentyouhave
butbeclearaboutthegen-AI-specificskillsyouneed
Bynow,mostcompanieshaveadecentunderstandingofthetechnicalgenAIskillstheyneed,suchasmodelfine-tuning,vectordatabaseadministration,prompt
engineering,andcontextengineering.Inmany
cases,theseareskillsthatyoucantrainyourexistingworkforcetodevelop.ThosewithexistingAIand
machinelearning(ML)capabilitieshaveastronghead
start.Dataengineers,forexample,canlearnmultimodalprocessingandvectordatabasemanagement,MLOps(MLoperations)engineerscanextendtheirskillsto
LLMOps(LLMoperations),anddatascientistscan
developpromptengineering,biasdetection,andfine-tuningskills.
Thelearningprocesscantaketwotothreemonthsto
gettoadecentlevelofcompetencebecauseofthe
complexitiesinlearningwhatvariousLLMscanandcan’tdoandhowbesttousethem.Thecodersneedtogain
experiencebuildingsoftware,testing,andvalidating
4
answers,forexample.Ittookonefinancial-servicescompanythreemonthstotrainitsbestdatascientiststoahighlevelofcompetence.Whilecoursesanddocumentation
areavailable—manyLLMprovidershavebootcampsfordevelopers—wehavefound
thatthemosteffectivewaytobuildcapabilitiesatscaleisthroughapprenticeship,
trainingpeopletothentrainothers,andbuildingcommunitiesofpractitioners.Rotatingexpertsthroughteamstotrainothers,schedulingregularsessionsforpeopletoshare
learnings,andhostingbiweeklydocumentationreviewsessionsarepracticesthathaveprovensuccessfulinbuildingcommunitiesofpractitioners(seesidebar“AsampleofnewgenerativeAIskillsneeded”).
It’simportanttobearinmindthatsuccessfulgenAIskillsareaboutmorethancoding
proficiency.OurexperienceindevelopingourowngenAIplatform,Lilli,showedusthat
thebestgenAItechnicaltalenthasdesignskillstouncoverwheretofocussolutions,
contextualunderstandingtoensurethemostrelevantandhigh-qualityanswersare
generated,collaborationskillstoworkwellwithknowledgeexperts(totestandvalidate
answersanddevelopanappropriatecurationapproach),strongforensicskillstofigure
outcausesofbreakdowns(istheissuethedata,theinterpretationoftheuser’sintent,the
qualityofmetadataonembeddings,orsomethingelse?),andanticipationskillstoconceiveofandplanforpossibleoutcomesandtoputtherightkindoftrackingintotheircode.A
purecoderwhodoesn’tintrinsicallyhavetheseskillsmaynotbeasusefulateammember.
Whilecurrentupskillingislargelybasedona“learnonthejob”approach,weseearapid
marketemergingforpeoplewhohavelearnedtheseskillsoverthepastyear.Thatskill
growthismovingquickly.GitHubreportedthatdeveloperswereworkingongenAIprojects“inbignumbers,”andthat65,000publicgenAIprojectswerecreatedonitsplatformin
2023—ajumpofalmost250percentoverthepreviousyear.IfyourcompanyisjuststartingitsgenAIjourney,youcouldconsiderhiringtwoorthreeseniorengineerswhohavebuiltagenAIshaperproductfortheircompanies.Thiscouldgreatlyaccelerateyourefforts.
Formacentralizedteamtoestablishstandardsthatenableresponsiblescaling
ToensurethatallpartsofthebusinesscanscalegenAIcapabilities,centralizing
competenciesisanaturalfirstmove.Thecriticalfocusforthiscentralteamwillbeto
developandputinplaceprotocolsandstandardstosupportscale,ensuringthatteamscanaccessmodelswhilealsominimizingriskandcontainingcosts.Theteam’swork
couldinclude,forexample,procuringmodelsandprescribingwaystoaccessthem,developingstandardsfordatareadiness,settingupapprovedpromptlibraries,andallocatingresources.
WhiledevelopingLilli,ourteamhaditsmindonscalewhenitcreatedanopenplug-inarchitectureandsettingstandardsforhowAPIsshouldfunctionandbebuilt.They
developedstandardizedtoolingandinfrastructurewhereteamscouldsecurely
experimentandaccessaGPTLLM,agatewaywithpreapprovedAPIsthatteamscouldaccess,andaself-servedeveloperportal.Ourgoalisthatthisapproach,overtime,can
5
AsampleofnewgenerativeAI
skillsneeded
Thefollowingareexamplesofnewskillsneededforthe
successfuldeploymentof
generativeAItools:
•datascientist:
–promptengineering
–in-contextlearning
–biasdetection
–patternidentification
–reinforcementlearningfromhumanfeedback
–hyperparameter/largelanguagemodelfine-
tuning;transferlearning
•dataengineer:
–datawranglinganddatawarehousing
–datapipelineconstruction
–multimodalprocessing
–vectordatabasemanagement
helpshift“Lilliasaproduct”(thatahandfulofteamsusetobuildspecificsolutions)to“Lilliasaplatform”(thatteamsacrosstheenterprisecanaccesstobuildotherproducts).
ForteamsdevelopinggenAIsolutions,squad
compositionwillbesimilartoAIteamsbutwithdata
engineersanddatascientistswithgenAIexperienceandmorecontributorsfromriskmanagement,compliance,
andlegalfunctions.Thegeneralideaofstaffingsquadswithresourcesthatarefederatedfromthedifferent
expertiseareaswillnotchange,buttheskillcompositionofagen-AI-intensivesquadwill.
Setupthetechnologyarchitecturetoscale
BuildingagenAImodelisoftenrelativelystraightforward,butmakingitfullyoperationalatscaleisadifferentmatterentirely.We’veseenengineersbuildabasicchatbotin
aweek,butreleasingastable,accurate,andcompliantversionthatscalescantakefourmonths.That’swhy,ourexperienceshows,theactualmodelcostsmaybeless
than10to15percentofthetotalcostsofthesolution.
Buildingforscaledoesn’tmeanbuildinganewtechnologyarchitecture.Butitdoesmeanfocusingonafewcore
decisionsthatsimplifyandspeedupprocesseswithoutbreakingthebank.Threesuchdecisionsstandout:
•Focusonreusingyourtechnology.Reusingcode
canincreasethedevelopmentspeedofgenAIuse
casesby30to50percent.Onegoodapproachis
simplycreatingasourceforapprovedtools,code,
andcomponents.Afinancial-servicescompany,for
example,createdalibraryofproduction-gradetools,
whichhadbeenapprovedbyboththesecurityandlegalteams,andmadethemavailableinalibraryforteams
touse.Moreimportantistakingthetimetoidentifyandbuildthosecapabilitiesthatarecommonacrossthe
mostpriorityusecases.Thesamefinancial-services
company,forexample,identifiedthreecomponentsthatcouldbereusedformorethan100identifiedusecases.Bybuildingthosefirst,theywereabletogeneratea
significantportionofthecodebaseforalltheidentifiedusecases—essentiallygivingeveryapplicationabig
headstart.
6
•FocusthearchitectureonenablingefficientconnectionsbetweengenAImodels
andinternalsystems.ForgenAImodelstoworkeffectivelyintheshaperarchetype,theyneedaccesstoabusiness’sdataandapplications.Advancesinintegrationandorchestrationframeworkshavesignificantlyreducedtheeffortrequiredtomake
thoseconnections.Butlayingoutwhatthoseintegrationsareandhowtoenable
themiscriticaltoensurethesemodelsworkefficientlyandtoavoidthecomplexity
thatcreatestechnicaldebt(the“tax”acompanypaysintermsoftimeandresourcesneededtoredressexistingtechnologyissues).Chiefinformationofficersandchief
technologyofficerscandefinereferencearchitecturesandintegrationstandardsfortheirorganizations.Keyelementsshouldincludeamodelhub,whichcontainstrainedandapprovedmodelsthatcanbeprovisionedondemand;standardAPIsthatactas
bridgesconnectinggenAImodelstoapplicationsordata;andcontextmanagement
andcaching,whichspeedupprocessingbyprovidingmodelswithrelevantinformationfromenterprisedatasources.
•Buildupyourtestingandqualityassurancecapabilities.OurownexperiencebuildingLillitaughtustoprioritizetestingoverdevelopment.Ourteaminvestedinnotonly
developingtestingprotocolsforeachstageofdevelopmentbutalsoaligningtheentire
teamsothat,forexample,itwasclearwhospecificallyneededtosignoffoneachstageoftheprocess.Thissloweddowninitialdevelopmentbutspeduptheoveralldelivery
paceandqualitybycuttingbackonerrorsandthetimeneededtofixmistakes.
Ensuredataqualityandfocusonunstructureddatatofuelyourmodels
TheabilityofabusinesstogenerateandscalevaluefromgenAImodelswilldependonhowwellittakesadvantageofitsowndata.Aswithtechnology,targetedupgradesto
existingdataarchitectureareneededtomaximizethefuturestrategicbenefitsofgenAI:
•Betargetedinrampingupyourdataqualityanddataaugmentationefforts.While
dataqualityhasalwaysbeenanimportantissue,thescaleandscopeofdatathatgen
AImodelscanuse—especiallyunstructureddata—hasmadethisissuemuchmore
consequential.Forthisreason,it’scriticaltogetthedatafoundationsright,from
clarifyingdecisionrightstodefiningcleardataprocessestoestablishingtaxonomiessomodelscanaccessthedatatheyneed.Thecompaniesthatdothiswelltietheir
dataqualityandaugmentationeffortstothespecificAI/genAIapplicationanduse
case—youdon’tneedthisdatafoundationtoextendtoeverycorneroftheenterprise.
Thiscouldmean,forexample,developinganewdatarepositoryforallequipment
specificationsandreportedissuestobettersupportmaintenancecopilotapplications.
•Understandwhatvalueislockedintoyourunstructureddata.Mostorganizationshave
traditionallyfocusedtheirdataeffortsonstructureddata(valuesthatcanbeorganizedintables,suchaspricesandfeatures).ButtherealvaluefromLLMscomesfromtheirabilitytoworkwithunstructureddata(forexample,PowerPointslides,videos,and
text).Companiescanmapoutwhichunstructureddatasourcesaremostvaluableandestablishmetadatataggingstandardssomodelscanprocessthedataandteamscan
7
findwhattheyneed(taggingisparticularlyimportanttohelpcompaniesremovedatafrommodelsaswell,ifnecessary).Becreativeinthinkingaboutdataopportunities.Somecompanies,forexample,areinterviewingsenioremployeesastheyretire
andfeedingthatcapturedinstitutionalknowledgeintoanLLMtohelpimprovetheircopilotperformance.
•Optimizetolowercostsatscale.Thereisoftenasmuchasatenfolddifference
betweenwhatcompaniespayfordataandwhattheycouldbepayingiftheyoptimized
theirdatainfrastructureandunderlyingcosts.Thisissueoftenstemsfromcompanies
scalingtheirproofsofconceptwithoutoptimizingtheirdataapproach.Twocosts
generallystandout.Oneisstoragecostsarisingfromcompaniesuploadingterabytes
ofdataintothecloudandwantingthatdataavailable24/7.Inpractice,companies
rarelyneedmorethan10percentoftheirdatatohavethatlevelofavailability,and
accessingtherestovera24-or48-hourperiodisamuchcheaperoption.Theother
costsrelatetocomputationwithmodelsthatrequireon-callaccesstothousandsof
processorstorun.Thisisespeciallythecasewhencompaniesarebuildingtheirown
models(themakerarchetype)butalsowhentheyareusingpretrainedmodelsand
runningthemwiththeirowndataandusecases(theshaperarchetype).Companies
couldtakeacloselookathowtheycanoptimizecomputationcostsoncloudplatforms—
forinstance,puttingsomemodelsinaqueuetorunwhenprocessorsaren’tbeingused(suchaswhenAmericansgotobedandconsumptionofcomputingserviceslikeNetflixdecreases)isamuchcheaperoption.
Buildtrustandreusabilitytodriveadoptionandscale
BecausemanypeoplehaveconcernsaboutgenAI,thebaronexplaininghowthesetoolsworkismuchhigherthanformostsolutions.Peoplewhousethetoolswanttoknowhowtheywork,notjustwhattheydo.Soit’simportanttoinvestextratimeandmoneytobuildtrustbyensuringmodelaccuracyandmakingiteasytocheckanswers.
Oneinsurancecompany,forexample,createdagenAItooltohelpmanageclaims.As
partofthetool,itlistedalltheguardrailsthathadbeenputinplace,andforeachanswerprovidedalinktothesentenceorpageoftherelevantpolicydocuments.ThecompanyalsousedanLLMtogeneratemanyvariationsofthesamequestiontoensureanswer
consistency.Thesesteps,amongothers,werecriticaltohelpingendusersbuildtrustinthetool.
PartofthetrainingformaintenanceteamsusingagenAItoolshouldbetohelpthem
understandthelimitationsofmodelsandhowbesttogettherightanswers.Thatincludes
teachingworkersstrategiestogettothebestanswerasfastaspossiblebystartingwith
broadquestionsthennarrowingthemdown.Thisprovidesthemodelwithmorecontext,
anditalsohelpsremoveanybiasofthepeoplewhomightthinktheyknowtheanswer
already.Havingmodelinterfacesthatlookandfeelthesameasexistingtoolsalsohelps
usersfeellesspressuredtolearnsomethingneweachtimeanewapplicationisintroduced.
Gettingtoscalemeansthatbusinesseswillneedtostopbuildingone-o
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2.5.1 运用云存储(课件)-【中职专用】高一信息技术同步课堂(高教版2021基础模块上册)
- 培训员工寝室
- 舞蹈技巧与人生
- 慢性心力衰竭饮食护理
- 2024年城市更新项目承包合同
- 2024年度不锈钢装饰工程设计与施工合同
- 2024年度某电商公司与第三方支付平台之间的支付服务合同
- 2024年度停车场合作合同:某地产公司与某停车场的合作经营协议
- 优化医疗服务
- 2024年度企业战略规划与实施合同
- 2024秋国开学习网《形势与政策》形考任务专题测验1-5答案
- 幼儿园大班数学《6的组成与分解》课件
- 年产100万瓶工业气体、医用氧气充装项目可研报告
- 合同解除退费协议书
- DL-T 1071-2023 电力大件运输规范
- 部编版一年级上册语文第二单元 作业设计
- GB/T 44143-2024科技人才评价规范
- 专题03正比例函数和反比例函数(原卷版+解析)
- 景区引流协议合同范本
- 全球及中国疤痕治疗行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告(2024-2030)
- 护理英语智慧树知到期末考试答案章节答案2024年齐鲁医药学院
评论
0/150
提交评论