版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省咸宁市马桥中学2023-2024学年数学九上期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.2.反比例函数的图象经过点,则下列各点中,在这个函数图象上的是()A. B. C. D.3.如图,在□ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为()A.3:5 B.2:3 C.3:4 D.3:24.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.5.如图,、、、是上的四点,,,则的度数是()A. B. C. D.6.某次聚会,每两个参加聚会的人都互相握了一次手,有人统计一共握了10次手.求这次聚会的人数是多少?设这次聚会共有人,可列出的方程为()A. B. C. D.7.用一个平面去截一个圆锥,截面的形状不可能是()A.圆 B.矩形 C.椭圆 D.三角形8.如图,的正切值为()A. B. C. D.9.如图,在中,,则劣弧的度数为()A. B. C. D.10.方程x(x﹣1)=0的根是()A.0 B.1 C.0或1 D.无解二、填空题(每小题3分,共24分)11.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是_____.12.等边三角形中,,将绕的中点逆时针旋转,得到,其中点的运动路径为,则图中阴影部分的面积为__________.13.若圆中一条弦长等于半径,则这条弦所对的圆周角的度数为______.14.如图,若点A的坐标为(1,),则∠1的度数为_____.15.如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、交于点,连接AE,则tan∠DAE的值为___________.(不取近似值)16.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).17.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,若开口∠1=60°,半径为,则这个“吃豆小人”(阴影图形)的面积为_____.18.如图,半径为3的圆经过原点和点,点是轴左侧圆优弧上一点,则_____.三、解答题(共66分)19.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为(1)求袋子中白球的个数(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概率.20.(6分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点,点和点的坐标;(2)在抛物线的对称轴上有一动点,求的值最小时的点的坐标;(3)若点是直线下方抛物线上一动点,运动到何处时四边形面积最大,最大值面积是多少?21.(6分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.22.(8分)某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?23.(8分)如图,抛物线与轴相交于两点,点在点的右侧,与轴相交于点.求点的坐标;在抛物线的对称轴上有一点,使的值最小,求点的坐标;点为轴上一动点,在抛物线上是否存在一点,使以四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.24.(8分)如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标_____________;(2)若l经过点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l经过正方形ABCD的两个顶点,直接写出所有符合条件的c的值.25.(10分)如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.26.(10分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.(1)求反比例函数和一次函数的表达式;(2)直接写出关于的不等式的解集.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.2、D【分析】计算k值相等即可判断该点在此函数图象上.【详解】k=-23=-6,A.23=6,该点不在反比例函数的图象上;B.-2(-3)=6,该点不在反比例函数的图象上;C.16=6,该点不在反比例函数的图象上,D.1(-6)=-6,该点在反比例函数的图象上,故选:D.【点睛】此题考查反比例函数的性质,正确计算k值即可判断.3、A【分析】证得△ADP∽△RBP,可得,由AD=BC,可得.【详解】∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故选:A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的对应线段成比例.4、C【分析】连接CD,由直径所对的圆周角是直角,可得CD是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的长可求出sin∠ODC.【详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.5、A【分析】根据垂径定理得,结合和圆周角定理,即可得到答案.【详解】∵,∴,∵,∴.故选:A.【点睛】本题主要考查垂径定理和圆周角定理,掌握垂径定理和圆周角定理是解题的关键.6、D【分析】每个人都要和他自己以外的人握手一次,但两个人之间只握手一次,所以等量关系为×聚会人数×(聚会人数-1)=总握手次数,把相关数值代入即可.【详解】解:设参加这次聚会的同学共有x人,由题意得:,故选:D.【点睛】此题主要考查了一元二次方程的应用,正确理解题意,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7、B【分析】利用圆锥的形状特点解答即可.【详解】解:平行于圆锥的底面的截面是圆,故A可能;截面不可能是矩形,故B符合题意;斜截且与底面不相交的截面是椭圆,故C可能;过圆锥的顶点的截面是三角形,故D可能.故答案为B.【点睛】本题主要考查了截一个几何体所得的截面的形状,解答本题的关键在于明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.8、A【分析】根据圆周角定理和正切函数的定义,即可求解.【详解】∵∠1与∠2是同弧所对的圆周角,∴∠1=∠2,∴tan∠1=tan∠2=,故选A.【点睛】本题主要考查圆周角定理和正切函数的定义,把∠1的正切值化为∠2的正切值,是解题的关键.9、A【解析】注意圆的半径相等,再运用“等腰三角形两底角相等”即可解.【详解】连接OA,
∵OA=OB,∠B=37°
∴∠A=∠B=37°,∠O=180°-2∠B=106°.故选:A【点睛】本题考核知识点:利用了等边对等角,三角形的内角和定理求解解题关键点:熟记圆心角、弧、弦的关系;三角形内角和定理.10、C【分析】解一元二次方程时,需要把二次方程化为两个一元一次方程,此题可化为:或,解此两个一次方程即可.【详解】,或,,.
故选.【点睛】此题虽不难,但是告诉了学生求解的一个方法,高次的要化为低次的,多元得要化为一元的.二、填空题(每小题3分,共24分)11、x<﹣2或0<x<1【分析】根据两函数图象的上下位置关系结合交点横坐标即可找出不等式的解集,此题得解.【详解】解:观察函数图象可发现:当x<-2或0<x<1时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是当x<-2或0<x<1.故答案为当x<-2或0<x<1.【点睛】本题是一道一次函数与反比例函数相结合的题目,根据图象得出一次函数与反比例函数交点横坐标是解题的关键.12、【分析】先利用勾股定理求出OB,再根据,计算即可.【详解】解:在等边三角形中,O为的中点,∴OB⊥OC,,∴∠BOC=90°∴∵将绕的中点逆时针旋转,得到∴∴三点共线∴故答案为:【点睛】本题考查旋转变换、扇形面积公式,三角形的面积公式,以及勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13、30°或150°【解析】与半径相等的弦与两条半径可构成等边三角形,所以这条弦所对的圆心角为60°,而弦所对的圆周角两个,根据圆内接四边形对角互补可知,这两个圆周角互补,其中一个圆周角的度数为12×60故答案为30°或150°.14、60°.【分析】过点作⊥轴,构造直角三角形之后运用三角函数即可解答。【详解】解:过点作⊥轴,中,,∠,∠=°.【点睛】本题考查在平面直角坐标系中将点坐标转化为线段长度,和运用三角函数求角的度数问题,熟练掌握和运用这些知识点是解答关键.15、【分析】根据AB与BC的比是黄金比得到AB∶BC=,连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,证明四边形CEDO是菱形,得到,,即可求出tan∠DAE的值;【详解】解:∵AB与BC的比是黄金比,∴AB∶BC=连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,矩形的对角线、相交于点,∵CE∥BD,DE∥AC,∴四边形CEDO是平行四边形,又∵是矩形,∴OC=OD,∴四边形CEDO是菱形(邻边相等的平行四边形是菱形),∴CD与OE垂直且平分,∴,∴,tan∠DAE,故答案为:;【点睛】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;16、①③④【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定①;令x=0,求出y2的值,比较判定②;观察图象,判定③;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定④.【详解】∵抛物线y1=a(x+2)2+m与抛物线y2=(x﹣3)2+n的对称轴分别为x=-2,x=3,∴两条抛物线的对称轴距离为5,故①正确;∵抛物线y2=(x﹣3)2+n交于点A(1,3),∴2+n=3,即n=1;∴y2=(x﹣3)2+1,把x=0代入y2=(x﹣3)2+1得,y=≠5,②错误;由图象可知,当x>3时,y1>y2,∴x>3时,y1﹣y2>0,③正确;∵抛物线y1=a(x+2)2+m过原点和点A(1,3),∴,解得,∴.令y1=3,则,解得x1=-5,x2=1,∴AB=1-(-5)=6,∴A(1,3),B(-5,3);令y2=3,则(x﹣3)2+1=3,解得x1=5,x2=1,∴C(5,3),∴AC=5-1=4,∴BC=10,∴y轴是线段BC的中垂线,故④正确.故答案为①③④.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.17、5π【解析】∵∠1=60°,∴图中扇形的圆心角为300°,又∵扇形的半径为:,∴S阴影=.故答案为.18、【分析】由题意运用圆周角定理以及锐角三角函数的定义进行分析即可得解.【详解】解:假设圆与下轴的另一交点为D,连接BD,∵,∴BD为直径,,∵点,∴OB=2,∴,∵OB为和公共边,∴,∴.故答案为:.【点睛】本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等以及熟记锐角三角函数的定义是解题的关键.三、解答题(共66分)19、(1)袋子中白球有2个;(2)(两次都摸到白球)【分析】(1)设袋子中白球有个,根据摸出白球的概率=白球的个数÷红、白球的总数,列出方程即可求出白球的个数;(2)根据题意,列出表格,然后根据表格和概率公式求概率即可.【详解】解:(1)设袋子中白球有个,则,解得,经检验是该方程的解,答:袋子中白球有2个.(2)列表如下:红白1白2红(红,红)(红,白1)(红,白2)白1(白1,红)(白1,白1)(白1,白2)白2(白2,红)(白2,白1)(白2,白2)由上表可知,总共有9种等可能结果,其中两次都摸到白球的有4种,所以(两次都摸到白球)【点睛】此题考查的是根据概率求白球的数量和求概率问题,掌握列表法和概率公式是解决此题的关键.20、(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(,);(3)(-1,-1);2【分析】(1)令x=0,y=0,代入函数解析式,即可求解;
(1)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.
(3)过点M作MN⊥x轴与点N,设点M(x,x1+x-1),则AN=x+1,ON=-x,OB=1,OC=1,MN=-(x1+x-1)=-x1-x+1,根据S四边形ABCM=S△AOM+S△OCM+S△BOC构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)由y=0,得x1+x﹣1=0解得x1=﹣1,x1=l,∴A(﹣1,0),B(l,0),由x=0,得y=﹣1,∴C(0,﹣1).(1)连接AC与对称轴的交点即为点P.设直线AC为y=kx+b,则,得k=﹣l,∴y=﹣x﹣1.对称轴为x=,当x=时,y=-()﹣1=,∴P(,).(3)过点M作MN丄x轴与点N,设点M(x,x1+x﹣1),则OA=1,ON=﹣x,OB=1,OC=1,MN=﹣(x1+x﹣1)=﹣x1﹣x+1,S四边形ABCM=S△AOM+S△OCM+S△BOC=×1×(﹣x1﹣x+1)+×1(﹣x)+×1×1=﹣x1﹣1x+3=﹣(x+1)1+2.∵a=﹣1<0,∴当x=﹣1时,S四边形ABCM的最大值为2.∴点M坐标为(﹣1,﹣1)时,S四边形ABCM的最大值为2.【点睛】本题考查二次函数综合题、待定系数法、两点之间线段最短、最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决在性质问题,学会构建二次函数解决最值问题.21、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC为底的高是10,从而求得三角形ABC的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S△ABC=×2×1=1.22、购买了20件这种服装【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可;【详解】解:设购买了件这种服装.,∵∴购买的演出服多于10件根据题意得出:,解得:,,当时,元元,符合题意;当时,元元,不合题意,舍去;故答案为:.答:购买了20件这种服装.【点睛】本题考查了一元二次方程的应用,解答本题的关键是根据题意找出等量关系列出方程.23、(1),;(2);(3)点的坐标为,或.【分析】(1)把y=0代入函数解析式,解方程可求得A、B两点的坐标;把x=0代入函数解析式可求得C点的坐标.
(2)连接BC,交对称轴于P,P即为使PB+PC的值最小,设直线BC的解析式,把B、C的坐标代入即可求得系数,进而求得解析式,令x=2时,即可求得P的坐标;
(3)分两种情况:
①当存在的点N在x轴的上方时,根据对称性可得点N的坐标为(4,);
②当存在的点N在x轴下方时,作辅助线,构建三角形全等,证明得,即N点的纵坐标为-,列方程可得N的坐标.【详解】(1)当时,当时,,化简,得.解得.连接,交对称轴于点,连接.点和点关于抛物线的对称轴对称,.要使的值最小,则应使的值最小,所以与对称轴的交点使得的值最小.设的解析式为.将代入,可得,解得,抛物线的对称轴为直线当时,,①当在轴上方,此时,且.则四边形是平行四边形.②当在轴下方;作,交于点.如果四边形是平行四边形...又,.当时,,综上所述,点的坐标为,或.【点睛】本题考查了待定系数法求二次函数解析式.轴对称的性质、平行四边形的判定、三角形全等的性质和判定等知识,难度适中,第2问解题的关键是熟练掌握平行四边形的判定,采用分类讨论的思想和数形结合的思想解决问题.24、(1)D点的坐标为(1,1);(1)y=﹣x1+3x﹣1;(3)1≤MN≤;(4)所有符合条件的c的值为﹣1,1,﹣1.【分析】(1)根据正方形的性质,可得D点的坐标;(1)根据待定系数法,可得函数解析式;(3)根据顶点横坐标纵坐标越大,与x轴交点的线段越长,根据顶点横坐标纵坐标越小,与x轴交点的线段越短,可得答案;(4)根据待定系数法,可得c的值,要分类讨论,以防遗漏.【详解】解:(1)由正方形ABCD内或边上,已知点A(1,1),B(1,1),C(1,1),得D点的横坐标等于C点的横坐标,即D点的横坐标为1,D点的纵坐标等于A点的纵坐标,即D点的纵坐标为1,D点的坐标为(1,1);(1)把B(1,1)、C(1,1)代入解析式可得:,解得:所以二次函数的解析式为y=﹣x1+3x﹣1;(3)由此时顶点E的坐标为(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=1﹣,x1=1+,即N(1+,0),M(1﹣,0),所以MN=1+﹣(1﹣)=1.点E的坐标为B(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=0,x1=1,即N(1,0),M(0,0),所以MN=1﹣0=1.点E在线段AD上时,MN最大,点E在线段BC上时,MN最小;当顶点E在正方形ABCD内或边上时,1≤MN≤1;(4)当l经过点B,C时,二次函数的解析式为y=﹣x1+3x﹣1,c=﹣1;当l经过点A、D时,E点不在正方形ABCD内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深圳住宅买卖合同定制
- 兽药营销团队聘用合同范本
- 城市供水设施消火栓安装协议
- 外贸托管转让合同范例
- 财产协议书(2篇)
- 拖拉机驾驶员用工合同
- 工商局建设工程设计合同范本
- 保安承包煤矿合同范例
- 工程建设合资合同范例
- 个人红酒购销合同范例
- 2024-2025学年五年级科学上册第二单元《地球表面的变化》测试卷(教科版)
- 第八单元测试卷-2024-2025学年统编版语文三年级上册
- 第11讲 海水性质和海水运动(练习)(教师版) 2025年高考地理一轮复习讲练测(新教材新高考)
- 专题9.9 解析几何(2021-2023年)真题训练(解析版)
- GB/T 16439-2024交流伺服系统通用技术规范
- 2024年婴幼儿发展引导员(中级)职业技能鉴定考试题库(含答案)
- 《工程制图》期中测试
- 解一元一次方程(单元整体说课)课件-2024-2025学年人教版七年级数学上册
- TCAICC 001-2024 张家界莓茶质量等级评价
- 英语通识阅读智慧树知到答案2024年大连外国语大学
- 二十届三中全会精神应知应会知识测试30题(附答案)
评论
0/150
提交评论