2022-2023学年烟台市海阳市初二数学下学期期末检测卷附答案解析_第1页
2022-2023学年烟台市海阳市初二数学下学期期末检测卷附答案解析_第2页
2022-2023学年烟台市海阳市初二数学下学期期末检测卷附答案解析_第3页
2022-2023学年烟台市海阳市初二数学下学期期末检测卷附答案解析_第4页
2022-2023学年烟台市海阳市初二数学下学期期末检测卷附答案解析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年烟台市海阳市初二数学下学期期末检测卷

(总分120分)

一、选择题(本大题共10个小题,每小题3分,满分30分)。

'x=2

1.已知1'是方程2x+αy=6的一个解,则α的值是()

y=-1

A.2B.—2C.4D.-4

2.设JGy,z(z≠0)是实数,则下列结论正确的是()

A.若x>y,则xz>yzB.若土<上,贝∣J3χV4y

4z3z

九V

C.若x<y,则一<工D.若x>y,则x+z>y+z

ZZ

3.下列事件属于随机事件的是()

A.打开电视机,正在播放广告

B.13人中至少有两人同生肖

C.抛出一枚质地均匀的正六面体骰子,点数为0

D.明天早晨,太阳从东方升起

4.如图,直线y=x+5和直线y=0r+6相交于点P(20,25),则方程x+5=0r+匕的解是()

A.x=25B.x=20C.X=I5D.x=5

5.在AABC和A4'B'C'中,已知条件:①AB=A笈;②BC=B'C';®AC=AC;④NA=NA';

⑤NB=/?;(S)ZC=ZCo下列选项中,不能保证Z∖ABC⅛A4'6'C'的是()

A.①②③B.②③④C.③④⑤D.③⑤⑥

6.如图,在AABC中,。是/BAC的平分线与线段AC的垂直平分线的交点,OOLAB于点。,OEl

AC于点E,则下列结论不一定成立的是()

A.OA=OCB.OD=OEC.OA=OBD.AD=EC

7.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符

1

合这一结果的试验最有可能是

试验次数IOO20030050080010002000

频率0.3650.280.3300.3340.3360.3320.333

A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃

B.在一个装有3个红球、6个白球的箱子里(小球除颜色外都相同),从中摸到的是红球

C.抛一个质地均匀的正六面体骰子,向上的点数是5

D.抛一枚质地均匀的硬币,出现的是反面

8.如图,直线y∣=αr(αWO)与%=gx+力交于点尸,则下列四个结论:①α<0,⅛>0;②当x>0时,

A.1个B.2个C.3个D.4个

9.a,6是两个给定的整数,某同学分别计算当x=-1,1,2,4时,代数式OX+6的值,依次得到下列

四个结果,已知其中有三个是正确的,那么错误的一个是()

A.~a+b^∖B.a+b=5C.2a+b=8D.4o+b=14

10.在解决数学实际问题时,常常用到“数形结合”思想,比如:∣x+l∣的几何意义是数轴上表示数X

的点与表示数一1的点的距离,,-2|的几何意义是数轴上表示数X的点与表示数2的点的距离。当

∣x++|x—2∣取得最小值时,X的取值范围是()

A.x≤-lB.x≤—1或X22C.-1≤x≤2D.x≥2

二、填空题(本大题共6个小题,每小题3分,满分18分)

11.命题“如果.=匕,那么/=/"是命题。(填“真”或“假”)

12.若(x+2y+3)2与∣2x+y∣互为相反数,贝∣Jx+y的值为。

13.如图,在AABC中,NC=90°,DE是AB的垂直平分线,A。恰好平分/B4C,若8C=9,则OE

的长为。

2

14.若关于x,y的二元一次方程组I"—3)'="〃+3的解满足%+><0,则w7的最大值为__________

x+5y=5

15.七巧板是我国古代劳动人民的一项发明,被誉为“东方模板”它山五块等腰直角三角形、一块正方

形、一块平行四边形组成。如图,某同学利用七巧板拼成的正方形玩“滚小球游戏”,小球可以在该正

方形上自山滚动,并随机地停留在某块板上,则小球停留在阴影部分的概率是。

16.如图,长方形ABC。被分割成六个正方形,其中最小正方形的面积等于1,则长方形ABCQ的面积

为。

三、解答题(本大题共8个小题,满分72分)

17.(本题满分6分)

已知关于X,y的方程组I"+2'一6一°,若方程组的解满足χ+y=θ,求小的值。

x-2y+nu+5=0

18.(本题满分7分)

某运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作。若程序操作进行

了两次停止,求X的取值范围。

输入I~——--------------------------

“匕tIx2.+1--------»>95—J停止

_______________________F

19.(本题满分8分)

将两个大小不同的含45°角的直角三角板按如图1所示放置,从中抽象出一个几何图形(如图2),B,

C,E三点在同一条直线上,连接Oe与AE交于点凡

求证:DCLBE.

3

D

O

20.(本题满分9分)

如图,一次函数a=匕+6ɑ≠0)的图象与坐标轴交于A,B两点,与正比例函数%=依(Z'≠0)交于

点C(-2,4),OA=6。

(1)求一次函数yι=fcc+O(ZWO)的表达式及430C的面积;

(2)在线段AB上是否存在点P,使aOAP是以OA为底的等腰三角形?若存在,请直接写出点尸的坐

标;若不存在,请说明理由。

21.(本题满分9分)

如图,在BC中,AB=AC,点O在线段BA的延长线上,点E是AC中点,点f是BC边上一点。

(1)尺规作图:作/C4。的角平分线AM,连接正并延长,交AM于点G(保留作图痕迹,不写作法);

(2)试判断AG与CF的关系并给出证明。

22.(本题满分10分)

定义一种新运算''㊉"如下:当αNb时,a®b=ab—a;当“<匕时,a®b=ab+b«

(1)计算:(―2)㊉(2)若(-2x+l)㊉3=15,求X的值。

23.(本题满分10分)

某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,

己知购买1辆4型公交车和2辆8型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270

4

万元。

(1)求A型公交车和B型公交车每辆各多少万元?

(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公

交车的总费用,则该公司最多购买多少辆A型公交车?

24.(本题满分13分)

如图①,直线AB:y=fcv+b经过点8(0,6),且与直线。C:y=gx交于点C(加,2)。

(1)求直线A8的表达式;

(2)由图象直接写出关于X的不等式0<,x<乙+b的解集;

2

(3)如图②所示,P为X轴上A点右侧任意一点,以Bp为边作等腰RtZXBPM,其中P8=PM,NBPM

=90°,直线MA交y轴于点。。当点尸在X轴上运动时,线段。。的长度是否发生变化?若不变,求

出线段。。的长度;若变化,求线段OQ的取值范围。

5

2022-2023学年度第二学期期末检测

初二数学试题参考答案及评分意见

本试题答案及评分意见,供阅卷评分使用。考生若写出其它正确答案,可参照评分意见相应评分。

一、选择题(本大题共10个小题,每小题3分,满分3()分)

题号1234567891()

答案BDABBCBBAC

二、填空题(本大题共6个小题,每小题3分,满分18分)

11.真12.-113.314.~215.-16.143

8

三、解答题(本大题共8个小题,满分72分)

17.(本题满分6分)

%+2y-6=0,[x=-6.

解:(1)解方程组《,得4

x+y=0[y=6.

X=-6,13

将4代入工一2y+mx+5=0,得〃2=------

y=66

18.(本题满分7分)

2x+l≤95,①

解:由题意,

2(2%+1)+1>95.(2)

解不等式①,得x≤47∙

解不等式②,得x>23.

所以,X的取值范围是23<x≤470

19.(本题满分8分)

证明:由题意得,AB=AC.AD=AE,NBAC=NE4O=90°.

ZBAC+NcAE=ΛEAD+ACAE,即NBAE=ZCAD.

在AABE和AACD中,AB^AC,NBAE=NCAD,AE^AD.

.∖∕∖ABE^∕∖ACD..∙.∕B=NACD=45°.

ΛZBCD^ZACD+ZACB=45Q+45°=90°,B∣JDCVBE.

20.(本题满分9分)

解:(1)由OA=6得,A(6,0).

'-2k+b=4

将C(-2,4),A(6,0)分别代入y∣="+江得《,

6k+b=Q.

k=--

解得12

[b=3.

6

所以,一次函数的表达式为y=—;x+3.

由y∣=-gx+3得,B(0,3)。

・∙ABOC=~×3×2=3.

(2)存在,点P的坐标为(3,m].

21.(本题满分9分)

(1)如图为求作的图形。

(2)AG与CF平行且相等。

证明:"JAB=AC,ΛZB=ZC.

VZCΛD≈ZB+ZC.

:.ACAD=IAC,即NC=LNC4。,

2

;AM平分Nc40,ΛZCAG-ZCAD,

2

ΛZC4G≈ZC..∖AG∕∕CF.

是AC中点,:.AE^CE.

在44EG和ACE/中,NC4G=∕C,AE=CE,NAEG=NCEF.

:.AEG^/XCEF(ASA).

.∙.AG=b.

22.(本题满分10分)

解:(1)''—2<—,

2

(2)当—2x+123时,此时x≤-l.

13

则(一2尤+1)㊉3=(-2x+l)χ3-(-2x+l)=-4x+2=15,解得X=—一

4

13

"∙*X≤—1,∙*∙X—....符合题意°

4

当一2x+lV3时,此时二>一1.

3

则(—2x+1)〶3=(—2x+1)×3+3=—6x+6=15,解得X=.

2

7

3

∙.∙χ>-l,,x=--不符合题意,故舍去。

2

13

所以,X的值为一二.

4

23.(本题满分10分)

x+2y=165,

解:(1)设A型公交车和B型公交车每辆分别为X万元,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论