2022-2023学年陕西省汉中市西乡县第五中学高二数学理下学期摸底试题含解析_第1页
2022-2023学年陕西省汉中市西乡县第五中学高二数学理下学期摸底试题含解析_第2页
2022-2023学年陕西省汉中市西乡县第五中学高二数学理下学期摸底试题含解析_第3页
2022-2023学年陕西省汉中市西乡县第五中学高二数学理下学期摸底试题含解析_第4页
2022-2023学年陕西省汉中市西乡县第五中学高二数学理下学期摸底试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年陕西省汉中市西乡县第五中学高二数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知正方体ABCD-A1B1C1D1,则异面直线AB1与BC1所成的角的余弦值为(

)A. B. C. D.参考答案:A【分析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得。【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接。则,所以为等边三角形,所以。故选:A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目。

2.已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),f4(x)=f3′(x),…,fn(x)=fn﹣1′(x),则f2015(x)等于()A.sinx B.﹣sinx C.cosx D.﹣cosx参考答案:D【考点】导数的运算.【分析】对函数连续求导研究其变化规律,可以看到函数解析式呈周期性出现,以此规律判断求出f2015(x)【解答】解:由题意f1(x)=cosx,f2(x)=f1′(x)=﹣sinx,f3(x)=f2′(x)=﹣cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,…由此可知,在逐次求导的过程中,所得的函数呈周期性变化,从0开始计,周期是4,∵2015=4×503+3,故f2015(x)=f3(x)=﹣cosx故选:D3.设a、b是两条不同的直线,是两个不同的平面,下列命题中正确的是() A.若

B.若 C.若

D.若参考答案:B略4.已知斜率为的直线与椭圆交于两点,若这两点在x轴的射影恰好是椭圆的焦点,则e为(

)A. B. C. D.参考答案:D5.设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件参考答案:B【考点】不等关系与不等式;充要条件.【分析】根据由a>1,一定能得到<1.但当<1时,不能推出a>1(如a=﹣1时),从而得到结论.【解答】解:由a>1,一定能得到<1.但当<1时,不能推出a>1(如a=﹣1时),故a>1是<1的充分不必要条件,故选

B.6.已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A. B. C. D.2参考答案:A【考点】双曲线的简单性质.【分析】设|MF1|=x,则|MF2|=2a+x,利用勾股定理,求出x=,利用sin∠MF2F1=,求得x=a,可得=a,求出a=b,即可得出结论.【解答】解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.7.正方体ABCD-A1B1C1D1的棱长为1,点M在,N为B1B的中点,则为()参考答案:C8.

=

(

)A.

B.

C.

D.参考答案:D9.如图是2016年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和众数依次为()A.84,84 B.84,85 C.86,84 D.84,86参考答案:A【考点】BA:茎叶图.【分析】根据所给的茎叶图,看出七个数据,根据分数处理方法,去掉一个最高分93和一个最低分79后,把剩下的五个数字求出平均数和众数【解答】解:由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据84,84,86,84,87的中位数为84;众数为:84;故选A.10.函数,则函数值在的概率(

)A.

B.

C.

D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设函数的定义域为R,则k的取值范围是

A、

B、

C、

D、参考答案:B12.数列的首项为,前n项和为,若成等差数列,则

参考答案:略13.已知实数满足则的最小值是

.参考答案:14.,,,的夹角为60°,则与的夹角为__________.参考答案:120°【分析】由向量模的运算及数量积运算可得,再由向量的夹角公式运算可得解.【详解】解:,所以,设与的夹角为,则,又因,所以.【点睛】本题考查了两向量的夹角,属基础题.15.双曲线﹣=1(a>0,b>0)的右焦点为F,直线y=x与双曲线相交于A、B两点.若AF⊥BF,则双曲线的渐近线方程为.参考答案:y=±2x【考点】双曲线的简单性质.【分析】求得双曲线的右焦点,将直线y=x代入双曲线方程,求得x2=,则设A(x,),B(﹣x,﹣),=(x﹣c,),=(﹣x﹣c,﹣),由?=0,根据向量数量积的坐标表示,求得c2=x2,由双曲线的方程可知:c2=a2+b2,代入即可求得(b2﹣4a2)(9b2+4a2)=0,则可知b2﹣4a2=0,即可求得b=2a,根据双曲线的渐近线方程可知:y=±x=±2x.【解答】解:由题意可知:双曲线﹣=1(a>0,b>0)焦点在x轴上,右焦点F(c,0),则,整理得:(9b2﹣16a2)x2=9a2b2,即x2=,∴A与B关于原点对称,设A(x,),B(﹣x,﹣),=(x﹣c,),=(﹣x﹣c,﹣),∵AF⊥BF,∴?=0,即(x﹣c)(﹣x﹣c)+×(﹣)=0,整理得:c2=x2,∴a2+b2=×,即9b4﹣32a2b2﹣16a4=0,∴(b2﹣4a2)(9b2+4a2)=0,∵a>0,b>0,∴9b2+4a2≠0,∴b2﹣4a2=0,故b=2a,双曲线的渐近线方程y=±x=±2x,故答案为:y=±2x.16.在等比数列{an}中,已知a1+a3=8,a5+a7=4,则a9+a11+a13+a15=________.参考答案:317.已知函数在[1,+∞)上为减函数,则实数a的取值范围是

参考答案:a≥e三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥中,//,,,平面,.(Ⅰ)求证:平面;(Ⅱ)点为线段的中点,求直线与平面所成角的正弦值.参考答案:(法一)(Ⅰ)证明:以A为原点,建立空间直角坐标系,如图,

则又,平面

(Ⅱ)由(Ⅰ)知,平面的一个法向量为,

设直线与平面所成的角为,则,

所以直线与平面所成的角的正弦值为.

(法二)(Ⅰ)证明:设AC∩BD=O,∵CD∥AB,∴OB:OD=OA:OC=AB:CD=2

Rt△DAB中,DA=,AB=4,∴DB=,∴DO=DB=

同理,OA=CA=,∴DO2+OA2=AD2,即∠AOD=90o,∴BD⊥AC

又PA⊥平面ABCD,∴PA⊥BD

由AC∩PA=A,∴BD⊥平面PAC

(Ⅱ)解:连PO,取PO中点H,连QH,则QH∥BO,由(Ⅰ)知,QH⊥平面PAC∴∠QCH是直线QC与平面PAC所成的角.由(Ⅰ)知,QH=BO=,取OA中点E,则HE=PA=2,又EC=OA+OC=Rt△HEC中,HC2=HE2+EC2=∴Rt△QHC中,QC=,∴sin∠QCH=∴直线与平面所成的角的正弦值为.

略19.(20分)设,定义,

1)求的最小值;2)在条件下,求的最小值;3)在条件下,求的最小值,并加以证明。参考答案:解析:1)

-----------------------------------5分(当时,取到最小值)

2)

------------------------10分(当时,取到最小值)3)因为所以.---------15分(当时,取到最小值)每小题指出什么时候取到。

(5分)20.(本小题满分14分)如图,为矩形,为梯形,平面平面,,.(1)若为中点,求证:∥平面;(2)求平面与所成锐二面角的大小.参考答案:解(1)证明:连结,交与,连结,中,分别为两腰的中点

∴因为面,又面,所以平面(2)解法一:设平面与所成锐二面角的大小为,以为空间坐标系的原点,分别以所在直线为轴建立空间直角坐标系,则设平面的单位法向量为,则可设设面的法向量,应有

即:解得:,

所以∴所以平面与所成锐二面角为60°解法二:延长CB、DA相交于G,连接PG,过点D作DH⊥PG,垂足为H,连结HC∵矩形PDCE中PD⊥DC,而AD⊥DC,PD∩AD=D∴CD⊥平面PAD

∴CD⊥PG,

又CD∩DH=D∴PG⊥平面CDH,从而PG⊥HC∴∠DHC为平面PAD与平面PBC所成的锐二面角的平面角在△中,,可以计算在△中,所以平面与所成锐二面角为60°ks5u

略21.已知a、b、c是△ABC中∠A、∠B、∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.参考答案:【考点】解三角形.【专题】计算题.【分析】由已知a=4,b=5,S=5及S=absinC可得sinC=,于是∠C=60°,或∠C=120°,然后利用余弦定理可求c【解答】解:∵S=absinC,∴sinC=,于是∠C=60°,或∠C=120°,又c2=a2+b2﹣2abcosC当∠C=60°时,c2=a2+b2﹣ab,c=当∠C=120°时,c2=a2+b2+ab,c=.【点评】本题主要考查了三角形面积公式,余弦定理等知识解三角形,属于基础试题.22.从中任取2个数,从中任取2个数,⑴能组成多少个没有重复数字的四位数?⑵若将⑴中所有个位是的四位数从小到大排成一列,则第个数是多少?参考答案:⑴不用0时,有个;用0时,有个;共有个四位数.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论