版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
压轴大题12数据分析解决概率与统计综合问题压轴压轴秘籍数字样本特征众数:在一组数据中出现次数最多的数中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数平均数:,反映样本的平均水平方差:反映样本的波动程度,稳定程度和离散程度;越大,样本波动越大,越不稳定;越小,样本波动越小,越稳定;标准差:,标准差等于方差的算术平方根,数学意义和方差一样极差:等于样本的最大值最小值求随机变量X的分布列的步骤:(1)理解X的意义,写出X可能取得全部值;(2)求X取每个值的概率;(3)写出X的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量的期望、方差,求的期望与方差,利用期望和方差的性质(,)进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若~,则,.4.求解概率最大问题的关键是能够通过构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算的值;(2)计算回归系数;(3)写出回归直线方程.线性回归直线方程为:,,其中为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱),正相关;,负相关独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:压轴训练压轴训练一、解答题1.(2023秋·江苏南京·高三南京外国语学校校考阶段练习)某市正在创建全国文明城市,学校号召师生利用周末从事创城志愿活动.高三(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择.每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为.每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.2.(2023秋·江苏连云港·高三校考阶段练习)甲乙两人进行乒乓球比赛,经过以往的比赛分析,甲乙对阵时,若甲发球,则甲得分的概率为,若乙发球,则甲得分的概率为.该局比赛中,甲乙依次轮换发球(甲先发球),每人发两球后轮到对方进行发球.(1)求在前4球中,甲领先的概率;(2)12球过后,双方战平,已知继续对战奇数球后,甲获得胜利(获胜要求至少取得11分并净胜对方2分及以上).设净胜分(甲,乙的得分之差)为X,求X的分布列.3.(2023秋·江苏南通·高三统考阶段练习)一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球2n次,且每次取1只球.(1)当时,求恰好取到3次红球的概率;(2)X表示2n次取球中取到红球的次数,,求Y的数学期望(用n表示).4.(2022·江苏盐城·江苏省滨海中学校考模拟预测)甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得3分;如果只有一个人投中,则“虎队”得1分;如果两人都没投中,则“虎队”得0分.已知甲每轮投中的概率是,乙每轮投中的概率是;每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.(1)假设“虎队”参加两轮活动,求:“虎队”至少投中3个的概率;(2)①设“虎队”两轮得分之和为,求的分布列;②设“虎队”轮得分之和为,求的期望值.(参考公式)5.(2022秋·江苏淮安·高三马坝高中校考阶段练习)某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率均为,乙笔试部分每个环节通过的概率依次为,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为,,乙面试部分每个环节通过的概率依次为,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立.(1)求乙未能参与面试的概率;(2)记甲本次应聘通过的环节数为,求的分布列以及数学期望;(3)若该校仅招聘1名在职教师,试通过概率计算,判断甲、乙两人谁更有可能入职.6.(2022秋·江苏常州·高三常州市第三中学校联考阶段练习)某单位在“全民健身日”举行了一场趣味运动会,其中一个项目为投篮游戏.游戏的规则如下:每局游戏需投篮3次,若投中的次数多于未投中的次数,该局得3分,否则得1分.已知甲投篮的命中率为,且每次投篮的结果相互独立.(1)求甲在一局游戏中投篮命中次数X的分布列与期望;(2)若参与者连续玩局投篮游戏获得的分数的平均值大于2,即可获得一份大奖.现有和两种选择,要想获奖概率最大,甲应该如何选择?请说明理由.7.(2022春·江苏扬州·高三扬州中学校考开学考试)公元1651年,法国学者德梅赫向数学家帕斯卡请教了一个问题:设两名赌徒约定谁先赢满4局,谁便赢得全部赌注元,已知每局甲赢的概率为,乙赢的概率为,且每局赌博相互独立,在甲赢了2局且乙赢了1局后,赌博意外终止,则赌注该怎么分才合理?帕斯卡先和费尔马讨论了这个问题,后来惠更斯也加入了讨论,这三位当时欧洲乃至全世界著名的数学家给出的分配赌注的方案是:如果出现无人先赢4局且赌博意外终止的情况,则甲、乙按照赌博再继续进行下去各自赢得全部赌注的概率之比分配赌注.(友情提醒:珍爱生命,远离赌博)(1)若,甲、乙赌博意外终止,则甲应分得多少元赌注?(2)若,求赌博继续进行下去甲赢得全部赌注的概率,并判断“赌博继续进行下去乙赢得全部赌注”是否为小概率事件(发生概率小于的随机事件称为小概率事件).8.(2023·江苏无锡·辅仁高中校联考模拟预测)互花米草是禾本科草本植物,其根系发达,具有极高的繁殖系数,对近海生态具有较大的危害.为尽快消除互花米草危害,2022年10月24日,市政府印发了《莆田市互花米草除治攻坚实施方案》,对全市除治攻坚行动做了具体部署.某研究小组为了解甲、乙两镇的互花米草根系分布深度情况,采用按比例分层抽样的方法抽取样本.已知甲镇的样本容量,样本平均数,样本方差;乙镇的样本容量,样本平均数,样本方差.(1)求由两镇样本组成的总样本的平均数及其方差;(2)为营造“广泛发动、全民参与”的浓厚氛围,甲、乙两镇决定进行一次“互花米草除治大练兵”比赛,两镇各派一支代表队参加,经抽签确定第一场在甲镇举行.比赛规则:每场比赛直至分出胜负为止,胜方得1分,负方得0分,下一场在负方举行,先得2分的代表队获胜,比赛结束.当比赛在甲镇举行时,甲镇代表队获胜的概率为,当比赛在乙镇举行时,甲镇代表队获胜的概率为.假设每场比赛结果相互独立.甲镇代表队的最终得分记为X,求.参考数据:.9.(2022·江苏连云港·江苏省赣榆高级中学校考模拟预测)某超市开展购物抽奖送积分活动,每位顾客可以参加(,且)次抽奖,每次中奖的概率为,不中奖的概率为,且各次抽奖相互独立.规定第1次抽奖时,若中奖则得10分,否则得5分.第2次抽奖,从以下两个方案中任选一个;方案①:若中奖则得30分,否则得0分;方案②:若中奖则获得上一次抽奖得分的两倍,否则得5分.第3次开始执行第2次抽奖所选方案,直到抽奖结束.(1)如果,以抽奖的累计积分的期望值为决策依据,顾客甲应该选择哪一个方案?并说明理由;(2)记顾客甲第i次获得的分数为,并且选择方案②.请直接写出与的递推关系式,并求的值.(精确到0.1,参考数据:.)10.(2022·江苏南京·高三金陵中学校考学业考试)规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回的任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则记该轮为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量,求的分布列和数学期望;(2)为验证抽球试验成功的概率不超过,有1000名数学爱好者独立的进行该抽球试验,记表示成功时抽球试验的轮次数,表示对应的人数,部分统计数据如下:1234523298604020求关于的回归方程,并预测成功的总人数(精确到1);(3)证明:.附:经验回归方程系数:,;参考数据:,,(其中,).11.(2023秋·江苏南通·高三江苏省如皋中学校考阶段练习)现代排球赛为5局3胜制,每局25分,决胜局15分.前4局比赛中,一队只有赢得至少25分,并领先对方2分时,才胜1局.在第5局比赛中先获得15分并领先对方2分的一方获胜.在一个回合中,赢的球队获得1分,输的球队不得分,且下一回合的发球权属于获胜方.经过统计,甲、乙两支球队在每一个回合中输赢的情况如下:当甲队拥有发球权时,甲队获胜的概率为;当乙队拥有发球权时,甲队获胜的概率为.(1)假设在第1局比赛开始之初,甲队拥有发球权,求甲队在前3个回合中恰好获得2分的概率;(2)当两支球队比拼到第5局时,两支球队至少要进行15个回合,设甲队在第个回合拥有发球权的概率为.假设在第5局由乙队先开球,求在第15个回合中甲队开球的概率,并判断在此回合中甲、乙两队开球的概率的大小.12.(2022·江苏泰州·统考模拟预测)设是一个二维离散型随机变量,它们的一切可能取的值为,其中,令,称是二维离散型随机变量的联合分布列.与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式:………·………………现有个相同的球等可能的放入编号为1,2,3的三个盒子中,记落下第1号盒子中的球的个数为X,落入第2号盒子中的球的个数为Y.(1)当n=2时,求的联合分布列;(2)设且计算.13.(2022·江苏南通·海安高级中学校考二模)我国某芯片企业使用新技术对一款芯片进行试产,设试产该款芯片的次品率为p(0<p<1),且各个芯片的生产互不影响.(1)试产该款芯片共有两道工序,且互不影响,其次品率依次为,.①求p;②现对该款试产的芯片进行自动智能检测,自动智能检测为次品(注:合格品不会被误检成次品)的芯片会被自动淘汰,然后再进行人工抽检已知自动智能检测显示该款芯片的合格率为96%,求人工抽检时,抽检的一个芯片是合格品的概率.(2)视p为概率,记从试产的芯片中随机抽取n个恰含m(n>m)个次品的概率为,求证:在时取得最大值.14.(2022·江苏南京·南京市江宁高级中学校考模拟预测)2022年2月6日,中国女足在两球落后的情况下,以3比2逆转击败韩国女足,成功夺得亚洲杯冠军,在之前的半决赛中,中国女足通过点球大战惊险战胜日本女足,其中门将朱钰两度扑出日本队员的点球,表现神勇.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为,易知.①试证明为等比数列;②设第n次传球之前球在乙脚下的概率为,比较与的大小.15.(2022秋·江苏常州·高三校联考阶段练习)汽车尾气排放超标是全球变暖、海平面上升的重要因素.我国近几年着重强调可持续发展,加大在新能源项目的支持力度,积极推动新能源汽车产业发展,某汽车制造企业对某地区新能源汽车的销售情况进行调查,得到下面的统计表:年份20172018201920202021年份代码12345销量万辆1012172026(1)统计表明销量与年份代码有较强的线性相关关系,求关于的线性回归方程,并预测该地区新能源汽车的销量最早在哪一年能突破50万辆;(2)为了解购车车主的性别与购车种类(分为新能源汽车与传统燃油汽车)的情况,该企业心随机调查了该地区200位购车车主的购车情况作为样本其中男性车主中购置传统燃油汽车的有名,购置新能源汽车的有45名,女性车主中有20名购置传统燃油汽车.①若,将样本中购置新能源汽车的性别占比作为概率,以样本估计总体,试用(1)中的线性回归方程预测该地区2023年购置新能源汽车的女性车主的人数(假设每位车主只购买一辆汽车,结果精确到千人);②设男性车主中购置新能源汽车的概率为,将样本中的频率视为概率,从被调查的所有男性车主中随机抽取5人,记恰有3人购置新能源汽车的概率为,求当为何值时,最大.附:为回归方程,,.16.(2022秋·江苏南通·高三校考期中)核酸检测也就是病毒DNA和RNA的检测,是目前病毒检测最先进的检验方法,在临床上主要用于新型冠状乙肝、丙肝和艾滋病的病毒检测.通过核酸检测,可以检测血液中是否存在病毒核酸,以诊断机体有无病原体感染.某研究机构为了提高检测效率降低检测成本,设计了如下试验,预备12份试验用血液标本,其中2份阳性,10份阴性,从标本中随机取出n份分为一组,将样本分成若干组,从每一组的标本中各取部分,混合后检测,若结果为阴性,则判定该组标本均为阴性,不再逐一检测;若结果为阳性,需对该组标本逐一检测.以此类推,直到确定所有样本的结果.若每次检测费用为a元,记检测的总费用为X元.(1)当n=3时,求X的分布列和数学期望.(2)比较n=3与n=4两种方案哪一个更好,说明理由.17.(2023·江苏扬州·扬州中学校考模拟预测)2022年卡塔尔世界杯决赛圈共有32队参加,其中欧洲球队有13支,分别是德国、丹麦、法国、西班牙、英格兰、克罗地亚、比利时、荷兰、塞尔维亚、瑞士、葡萄牙、波兰、威尔士.世界杯决赛圈赛程分为小组赛和淘汰赛,当进入淘汰赛阶段时,比赛必须要分出胜负.淘汰赛规则如下:在比赛常规时间90分钟内分出胜负,比赛结束,若比分相同,则进入30分钟的加时赛.在加时赛分出胜负,比赛结束,若加时赛比分依然相同,就要通过点球大战来分出最后的胜负.点球大战分为2个阶段.第一阶段:前5轮双方各派5名球员,依次踢点球,以5轮的总进球数作为标准(非必要无需踢满5轮),前5轮合计踢进点球数更多的球队获得比赛的胜利.第二阶段:如果前5轮还是平局,进入“突然死亡”阶段,双方依次轮流踢点球,如果在该阶段一轮里,双方都进球或者双方都不进球,则继续下一轮,直到某一轮里,一方罚进点球,另一方没罚进,比赛结束,罚进点球的一方获得最终的胜利.下表是2022年卡塔尔世界杯淘汰赛阶段的比赛结果:淘汰赛比赛结果淘汰赛比赛结果1/8决赛荷兰美国1/4决赛克罗地亚巴西阿根廷澳大利亚荷兰阿根廷法国波兰摩洛哥葡萄牙英格兰塞内加尔英格兰法国日本克罗地亚半决赛阿根廷克罗地亚巴西韩国法国摩洛哥摩洛哥西班牙季军赛克罗地亚摩洛哥葡萄牙瑞士决赛阿根廷法国注:“阿根廷法国”表示阿根廷与法国在常规比赛及加时赛的比分为,在点球大战中阿根廷战胜法国.(1)请根据上表估计在世界杯淘汰赛阶段通过点球大战分出胜负的概率.(2)根据题意填写下面的列联表,并通过计算判断是否能在犯错的概率不超过0.01的前提下认为“32支决赛圈球队闯入8强”与是否为欧洲球队有关.欧洲球队其他球队合计闯入8强未闯入8强合计(3)若甲、乙两队在淘汰赛相遇,经过120分钟比赛未分出胜负,双方进入点球大战.已知甲队球员每轮踢进点球的概率为p,乙队球员每轮踢进点球的概率为,求在点球大战中,两队前2轮比分为的条件下,甲队在第一阶段获得比赛胜利的概率(用p表示).参考公式:0.10.050.010.0050.0012.7063.8416.6357.87910.82818.(2023春·江苏苏州·高三统考开学考试)设数轴上有一只兔子,从坐标开始,每秒以的概率向正方向跳一个单位,以的概率向反方向跳一个单位,记兔子第n秒时的位置为.(1)证明:;(2)记是表达式的最大值,证明:.19.(2023秋·江苏常州·高三江苏省前黄高级中学校考阶段练习)在一个典型的数字通信系统中,由信源发出携带着一定信息量的消息,转换成适合在信道中传输的信号,通过信道传送到接收端.有干扰无记忆信道是实际应用中常见的信道,信道中存在干扰,从而造成传输的信息失真.在有干扰无记忆信道中,信道输入和输出是两个取值的随机变量,分别记作和.条件概率,描述了输入信号和输出信号之间统计依赖关系,反映了信道的统计特性.随机变量的平均信息量定义为:.当时,信道疑义度定义为(1)设有一非均匀的骰子,若其任一面出现的概率与该面上的点数成正比,试求扔一次骰子向上的面出现的点数的平均信息量;(2)设某信道的输入变量与输出变量均取值0,1.满足:.试回答以下问题:①求的值;②求该信道的信道疑义度的最大值.20.(2023秋·江苏·高三淮阴中学校联考开学考试)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有位学生,每次活动均需该系位学生参加(和都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(2)求使取得最大值的整数.21.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数都在内,在以组距为5画分数的频率分布直方图(设“”)时,发现满足.(1)试确定的所有取值,并求;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在的参赛者评为一等奖;分数在的同学评为二等奖,但通过附加赛有的概率提升为一等奖;分数在的同学评为三等奖,但通过附加赛有的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生和均参加了本次比赛,且学生在第一阶段评为二等奖.()求学生最终获奖等级不低于学生的最终获奖等级的概率;()已知学生和都获奖,记两位同学最终获得一等奖的人数为,求的分布列和数学期望.22.(2023春·江苏南京·高三南京市第一中学校考开学考试)为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对学生体育锻炼的经常性有影响,为此随机抽查了男女生各100名,得到如下数据:性别锻炼不经常经常女生4060男生2080(1)依据的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;(2)从这200人中随机选择1人,已知选到的学生经常参加体育锻炼,求他是男生的概率;(3)为了提高学生体育锻炼的积极性,集团设置了“学习女排精神,塑造健康体魄”的主题活动,在该活动的某次排球训练课上,甲乙丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求第次传球后球在甲手中的概率.附:0.0100.0050.0016.6357.87910.82823.(2023秋·江苏·高三统考阶段练习)第22届世界杯于2022年11月21日到12月18日在卡塔尔举办.在决赛中,阿根廷队通过点球战胜法国队获得冠军.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 橡胶鞋行业标准制定与质量监管-洞察分析
- 单位补缴社保承诺书(6篇)
- 舞蹈教育信息化探索-洞察分析
- 虚拟现实渲染技术-洞察分析
- 保险金融行业理赔流程心得
- 儿童家具的个性化定制化设计趋势
- 办公环境中的智能家居安全解决方案
- 从零到一创新型实验室的安全教育培训全流程解析
- 创新驱动的科技教育模式探索
- 2025建筑工程公司集体合同集体合同适用于分公司
- 《园林政策与法规》课件
- 扬尘防治(治理)监理实施细则(范本)
- 读书分享《终身成长》课件
- GB/T 44843-2024在用自动扶梯和自动人行道安全评估规范
- 广东省广州市2023-2024学年六年级上学期语文期末试卷(含答案)
- 宫颈癌护理查房-5
- 律师事务所整体转让协议书范文
- 照明设备课件教学课件
- 2023-2024学年全国初中七年级下地理人教版期中考试试卷(含答案解析)
- 债券入门基础知识单选题100道及答案解析
- 堆载预压施工方案
评论
0/150
提交评论