江苏省扬州市竹西中学2023年数学九年级第一学期期末综合测试试题含解析_第1页
江苏省扬州市竹西中学2023年数学九年级第一学期期末综合测试试题含解析_第2页
江苏省扬州市竹西中学2023年数学九年级第一学期期末综合测试试题含解析_第3页
江苏省扬州市竹西中学2023年数学九年级第一学期期末综合测试试题含解析_第4页
江苏省扬州市竹西中学2023年数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市竹西中学2023年数学九年级第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,是必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数为偶数B.三角形的内角和等于180°C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”2.如果,那么下列比例式中正确的是()A. B. C. D.3.如图,A,B,C,D是⊙O上的四个点,弦AC,BD交于点P.若∠A=∠C=40°,则∠BPC的度数为()A.100° B.80°C.50° D.40°4.将二次函数y=5x2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x+2)2﹣3 D.y=5(x﹣2)2﹣35.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.6.若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣17.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为A.12 B.9 C.6 D.48.已知a≠0,下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a59.如图点D、E分别在△ABC的两边BA、CA的延长线上,下列条件能判定ED∥BC的是().A.; B.;C.; D..10.如图,已知AD∥BE∥CF,那么下列结论不成立的是()A. B. C. D.11.如图,△ABC中,∠ACB=90°,∠A=30°,将△ABC绕C点按逆时针方向旋转角(0°<<90°)得到△DEC,设CD交AB于点F,连接AD,当旋转角度数为________,△ADF是等腰三角形.A.20° B.40° C.10° D.20°或40°12.方程(m﹣1)x2﹣2mx+m﹣1=0中,当m取什么范围内的值时,方程有两个不相等的实数根?()A.m> B.m>且m≠1 C.m< D.m≠1二、填空题(每题4分,共24分)13.若x=是一元二次方程的一个根,则n的值为____.14.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=2:3,则△ADE与△ABC的面积之比为________.15.)已知反比例函数y=-,下列结论:①图象必经过点(-1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>-2.其中正确的有__________.(填序号)16.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.17.小球在如图6所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是____.

18.若是方程的一个根,则式子的值为__________.三、解答题(共78分)19.(8分)港珠澳大桥是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.732,tan20°≈0.36,结果精确到0.1)20.(8分)如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF21.(8分)如图,已知抛物线y=﹣x2+bx+c的图象经过(1,0),(0,3)两点.(1)求b,c的值;(2)写出当y>0时,x的取值范围.22.(10分)如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=,CD=2,求直径BC的长.23.(10分)如图,在平面直角坐标系xOy中,直线和抛物线W交于A,B两点,其中点A是抛物线W的顶点.当点A在直线上运动时,抛物线W随点A作平移运动.在抛物线平移的过程中,线段AB的长度保持不变.应用上面的结论,解决下列问题:在平面直角坐标系xOy中,已知直线.点A是直线上的一个动点,且点A的横坐标为.以A为顶点的抛物线与直线的另一个交点为点B.(1)当时,求抛物线的解析式和AB的长;(2)当点B到直线OA的距离达到最大时,直接写出此时点A的坐标;(3)过点A作垂直于轴的直线交直线于点C.以C为顶点的抛物线与直线的另一个交点为点D.①当AC⊥BD时,求的值;②若以A,B,C,D为顶点构成的图形是凸四边形(各个内角度数都小于180°)时,直接写出满足条件的的取值范围.24.(10分)已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.

(1)如图1,分别求的值;(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.25.(12分)已知(1)求的值;(2)若,求的值.26.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据事件发生的可能性大小判断相应事件的类型.【详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【分析】根据比例的性质,若,则判断即可.【详解】解:故选:C.【点睛】本题主要考查了比例的性质,灵活的利用比例的性质进行比例变形是解题的关键.3、B【分析】根据同一个圆中,同弧所对的圆周角相等,可知,结合题意求的度数,再根据三角形的一个外角等于其不相邻两个内角和解题即可.【详解】故选B【点睛】本题考查圆的综合,其中涉及圆周角定理、三角形外角性质,是常见考点,熟练掌握相关知识是解题关键.4、D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将二次函数y=5x2的图象先向右平移2个单位所得函数的解析式为:y=5(x﹣2)2,由“上加下减”的原则可知,将二次函数y=5(x﹣2)2的图象先向下平移3个单位所得函数的解析式为:y=5(x﹣2)2﹣3,故选D.【点睛】本题考查了二次函数的图象的平移变换,熟知函数图象几何变换的法则是解答此题的关键.5、C【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.6、C【分析】根据根的判别式()即可求出答案.【详解】由题意可知:∴∵∴且,故选:C.【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k的取值范围.7、B【解析】∵点,是中点∴点坐标∵在双曲线上,代入可得∴∵点在直角边上,而直线边与轴垂直∴点的横坐标为-6又∵点在双曲线∴点坐标为∴从而,故选B8、C【分析】结合选项分别进行同底数幂的乘法、同底数幂的除法、幂的乘方的运算,选出正确答案.【详解】A、a2和a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,原式计算错误,故本选项错误;C、a3÷a2=a,计算正确,故本选项正确;D、(a2)3=a6,原式计算错误,故本选项错误.故选:C.【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方等运算,掌握运算法则是解答本题的关键.9、D【分析】根据选项选出能推出,推出或的即可判断.【详解】解:、∵,,不符合两边对应成比例及夹角相等的相似三角形判定定理.无法判断与相似,即不能推出,故本选项错误;、,,,,即不能推出,故本选项错误;、由可知,不能推出,即不能推出,即不能推出两直线平行,故本选项错误;、∵,,,,,,故本选项正确;故选:.【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似.10、D【分析】根据平行线分线段成比例定理列出比例式,判断即可.【详解】∵AD∥BE∥CF,∴,成立;,成立,故D错误,成立,故选D.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理,找准对应关系是解题的关键.11、D【分析】根据旋转的性质可得AC=CD,根据等腰三角形的两底角相等求出∠ADF=∠DAC,再表示出∠DAF,根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三种情况讨论求解.【详解】∵△ABC绕C点逆时针方向旋转得到△DEC,∴AC=CD,∴∠ADF=∠DAC=(180°-α),∴∠DAF=∠DAC-∠BAC=(180°-α)-30°,根据三角形的外角性质,∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三种情况讨论,①∠ADF=∠DAF时,(180°-α)=(180°-α)-30°,无解,②∠ADF=∠AFD时,(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD时,(180°-α)-30°=30°+α,解得α=20°,综上所述,旋转角α度数为20°或40°.故选:D.【点睛】本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论.12、B【分析】由题意可知原方程的根的判别式△>0,由此可得关于m的不等式,求出不等式的解集后再结合方程的二次项系数不为0即可求出答案.【详解】解:由题意可知:△=4m2﹣4(m﹣1)2>0,解得:∴m>,∵m﹣1≠0,∴m≠1,∴m的范围是:m>且m≠1.故选:B.【点睛】本题考查了一元二次方程的根的判别式和一元一次不等式的解法等知识,属于基本题型,熟练掌握一元二次方程的根的判别式与方程根的个数的关系是解题关键.二、填空题(每题4分,共24分)13、.【分析】把代入到一元二次方程中求出的值即可.【详解】解:∵是一元二次方程的一个根,∴,解得:,故答案为:.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值,牢记方程的解满足方程,代入即可是解决此类问题的关键.14、4:1【解析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案为:4:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.15、①③④【解析】①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y随x的增大而增大;③k=﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y随x的增大而增大,若x>1,则y>﹣2,故答案为①③④.16、【分析】过点A作AH⊥DE,垂足为H,由旋转的性质可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根据等腰直角三角形的性质可得∠HAE=45°,AH=3,进而得∠HAF=30°,继而求出AF长即可求得答案.【详解】过点A作AH⊥DE,垂足为H,∵∠BAC=90°,AB=AC,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案为.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.17、【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【详解】由图可知,共有5块瓷砖,白色的有3块,所以它停在白色地砖上的概率=.考点:概率.18、1【分析】将a代入方程中得到,将其整体代入中,进而求解.【详解】由题意知,,即,∴,故答案为:1.【点睛】本题考查了方程的根,求代数式的值,学会运用整体代入的思想是解题的关键.三、解答题(共78分)19、斜拉索顶端A点到海平面B点的距离AB约为93.7米.【分析】在Rt△ACD和Rt△BCD中,根据锐角三角函数求出AD、BD,即可求出AB.【详解】如图,由题意得,在△ABC中,CD=100,∠ACD=30°,∠DCB=20°,CD⊥AB,在Rt△ACD中,AD=CD•tan∠ACD=100×≈57.73(米),在Rt△BCD中,BD=CD•tan∠BCD≈100×0.36≈36(米),∴AB=AD+DB=57.73+36=93.73≈93.7(米),答:斜拉索顶端A点到海平面B点的距离AB约为93.7米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题问题,掌握锐角三角函数的意义是解题的关键.20、1.【解析】(1)根据等边三角形性质得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根据SAS证△BAP≌△EAQ,推出∠AEQ=∠ABC=90°;

(1)根据等边三角形性质求出∠ABE=∠AEB=60°,根据∠ABC=90°=∠AEQ求出∠BEF=∠EBF=30°,即可得出答案.(1)解:△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(1)解:∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠AEB=45°=∠ABE,∴AE=AB=,由勾股定理得:BE=,即BC=BE=1.“点睛”本题考查了等边三角形的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用.21、(1)b=-2,c=3;(2)当y>0时,﹣3<x<1.【分析】(1)由题意求得b、c的值;

(2)当y>0时,即图象在第一、二象限的部分,再求出抛物线和x轴的两个交点坐标,即得x的取值范围;【详解】(1)根据题意,将(1,0)、(0,3)代入,得:解得:(2)由(1)知抛物线的解析式为当y=0时,解得:或x=1,则抛物线与x轴的交点为∴当y>0时,﹣3<x<1.【点睛】考查待定系数法求二次函数解析式,抛物线与x轴的交点,二次函数的性质,数形结合是解题的关键.22、(1)见解析;(2)2【分析】(1)由等弧所对的圆周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可证△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性质可求BC的长.【详解】(1)∵D是弧AC的中点,∴,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直径,∴∠BDC=90°,∴DE1.∵△DCE∽△DBC,∴,∴,∴BC=2.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE∽△DBC是解答本题的关键.23、(1);(2);(3)①;②的取值范围是或.【分析】(1)根据t=3时,A的坐标可以求得是(3,-2),利用待定系数法即可求得抛物线的解析式,则B的坐标可以求得;

(2)△OAB的面积一定,当OA最小时,B到OA的距离即△OAB中OA边上的高最大,此时OA⊥AB,据此即可求解;

(3)①方法一:设AC,BD交于点E,直线l1:y=x-2,与x轴、y轴交于点P和Q(如图1).由点D在抛物线C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;

方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2),根据BD⊥AC,可得t-1=2t-,解方程即可得到t的值;

②设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,可得满足条件的t的取值范围.【详解】解:(1)∵点A在直线l1:y=x-2上,且点A的横坐标为3,

∴点A的坐标为(3,-2),

∴抛物线C1的解析式为y=-x2-2,

∵点B在直线l1:y=x-2上,

设点B的坐标为(x,x-2).

∵点B在抛物线C1:y=-x2-2上,

∴x-2=-x2-2,

解得x=3或x=-1.

∵点A与点B不重合,

∴点B的坐标为(-1,-3),

∴由勾股定理得AB=.

(2)当OA⊥AB时,点B到直线OA的距离达到最大,则OA的解析式是y=-x,则

,解得:,

则点A的坐标为(1,-1).(3)①方法一:设,交于点,直线,与轴、轴交于点和(如图1).则点和点的坐标分别为,.∴.∵.∵轴,∴轴.∴.∵,,∴.∵点在直线上,且点的横坐标为,∴点的坐标为.∴点的坐标为.∵轴,∴点的纵坐标为.∵点在直线上,∴点的坐标为.∴抛物线的解析式为.∵,∴点的横坐标为,∵点在直线上,∴点的坐标为.∵点在抛物线上,∴.解得或.∵当时,点与点重合,∴方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2)

则∠ANB=93°,∠ABN=∠OPB.

在△ABN中,BN=ABcos∠ABN,AN=ABsin∠ABN.

∵在抛物线C1随顶点A平移的过程中,

AB的长度不变,∠ABN的大小不变,

∴BN和AN的长度也不变,即点A与点B的横坐标的差以及纵坐标的差都保持不变.

同理,点C与点D的横坐标的差以及纵坐标的差也保持不变.

由(1)知当点A的坐标为(3,-2)时,点B的坐标为(-1,-3),

∴当点A的坐标为(t,t-2)时,点B的坐标为(t-1,t-3).

∵AC∥x轴,

∴点C的纵坐标为t-2.

∵点C在直线l2:y=x上,

∴点C的坐标为(2t-4,t-2).

令t=2,则点C的坐标为(3,3).

∴抛物线C2的解析式为y=x2.

∵点D在直线l2:y=x上,

∴设点D的坐标为(x,).

∵点D在抛物线C2:y=x2上,

∴=x2.

解得x=或x=3.

∵点C与点D不重合,

∴点D的坐标为(,).

∴当点C的坐标为(3,3)时,点D的坐标为(,).

∴当点C的坐标为(2t-4,t-2)时,点D的坐标为(2t−,t−).

∵BD⊥AC,

∴t−1=2t−.

∴t=.

②t的取值范围是t<或t>4.

设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,以A,B,C,D为顶点构成的图形不是凸四边形.

【点睛】本题考查了二次函数综合题,掌握待定系数法求得函数的解析式,点到直线的距离,平行于坐标轴的点的特点,方程思想的运用是解题的关键.24、(1),;(2);(3).【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;

(2)作轴于K,轴于L,OD=3OE,则OL=3OK,DL=3KE,设点E的横坐标为t,则点D的横坐标为-3t,则点E、D的坐标分别为:(t,)、(-3t,-+3t+),即可求解;(3)设点的横坐标为,可得PH=m2+m-,过作EF∥y轴交于点交轴于点,TE=PH+YE=m2+m-+2=(m+1)2,tan∠AHE=,tan∠PET=,而∠AHE+∠EPH=2α,故∠AHE=∠PET=∠EPH=α,PH=PQ•tanα,即m2+m-=(2m+2)×,解得:m=2-1,故YH=m+1=2,PQ=4,点P、Q的坐标分别为:(2-1,4)、(-2-1,4),tan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论