




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省聊城市高唐县八年级第一学期期中数学试
卷
一、选择题(本题共12个小题,每小题3分,共36分。在每个小题列出的选项中,选出
符合题目要求的一项)
1.第19届亚运会在浙江杭州举行,下列与杭州亚运会相关的图案中,是轴对称图形的是
()
2.下列各式:1,((x+y),士,—.其中分式有()
x2冗x-y
A.1个B.2个C.3个D.4个
3.下列各分式中,是最简分式的是()
2人222
A.x+yB.x-y
x-yx+y
C.AAD.-z-
xyy
21
4.若分式工的值为o,则x的值为()
x+1
A.0B.1C.-1D.+1
5.如图,已知NAOB,求作:NDEF,使NDEF=NAOB
作法:(1)以点O为圆心,任意长为半径画,分别交OA,于点P,Q;
(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点£>;
(3)以点。为圆心,P。长为半径画弧交第(2)步中所画弧于点色
(4)作射线EF,NQEF即为所求作的角.
根据以上作法,可以判断出△OPQ四△EOF的方法是()
A.SASB.SSSC.ASAD.AAS
6.三个全等三角形按如图的形式摆放,则N1+N2+N3的度数是()
C.135°D.180°
AA.-a-+--m-=—a
bFb
6xy2
rf+2m-l_iD.=2xy
u.-=-m+123
m-139xy
8.若A(m,2-n)关于工轴对称的点是A](4,5),则P(m,n)的坐标是(
A.(-4,-3)B.(4,7)C.(-4,7)D.(5,-4)
9.如图,将一张长方形纸片按如图方式折叠,BD、BE为折痕,若NA8E=30°,则ND8C
10.如图,△ABC中,AB=10,AC=6,AO平分NB4C,CDLAD,£为8c的中点,则
A.2B.3C.1.5D.2.5
11.如图,在AABC中,AB的垂直平分线交A8于点£>,交BC于点E,连接AE.若BC
=5,AC=4,则aACE的周长为()
C.13D.14
12.如图,在正方形ABCQ中,E,尸分别为A。,8c的中点,P为对角线8。上的一个动
点,则下列线段的长等于AP+EP最小值的是()
A.ABB.DEC.BDD.AF
二、填空题(本题共5小题,每小题3分,共15分)
18xy
13.约分:-----六万二
27x2/
14.已知a2-a-2=0,则代数式上-士的值为____________________.
aa-1
15.等腰三角形的周长为18.其中一条边的长为8,则底边长是.
16.如图,点P为/AOB内一点,分别作出尸点关于。8、0A的对称点Pi,Pi,连接P1P2
交OB于M,交0A于N,若NAOB=40°,则NMPN的度数是
222x+18
17.已知x为整数,且病■石『—ry为整数,则所有符合条件的x值的和为.
三、解答题(本大题共8小题,共计69分。解答题要写出必要的文字说明、证明过程或演
算步骤。)
18.两个城镇A、3与两条公路ME,MF位置如图所示,其中ME是东西方向公路.现电
信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇4、B的距离必须相等,
到两条公路ME,M尸的距离也必须相等,且在/尸ME的内部,请在图中,用尺规作图找
求作、作法,只保留作图痕迹)
.a2
(1)1----—
a-1a2_j
(2)(_i_2izL).a'-4a+4
a1
⑦a+l2+2a
20.如图,点8,F,C,£在同一条直线上,AB=DE,NB=NE,BF=CE.求证:AC//
DF.
21.-x+1),请从-1,0,2中选择你喜欢的一个数作
为x的值代入,求出相应的分式的值.
22.如图,在△ABC中,AB^AC,OE是4B的垂直平分线,垂足为。,交AC于E,已知
NA8E=40。,求/EBC的度数.
23.在直角坐标系中,已知点ACa+b,2-a)与点8(a-5,b-2a)关于y轴对称,
(1)试确定点A、B的坐标;
(2)如果点3关于x轴的对称的点是C,求△ABC的面积.
24.在aABC中,和C£)分别平分N4BC和NAC8,过点D作EF〃BC,分别交A8,
AC于点E,F.
(1)若A8=AC,请判断是否是等腰三角形,并说明理由;
(2)若△ABC的周长为18,BC=6,求△/1£■尸的周长.
25.在等边三角形A8C中,点E在AB上,点。在CB的延长线上,且EC=EC.
(I)如图1,当点E为A8的中点时,确定线段AE与08的大小关系,并说明理由;
(2)如图2,当点E为AB上任意一点时,确定线段AE与。8的大小关系,并说明理由;
(3)在等边三角形ABC中,若点E在直线AB上,点。在线段CB的延长线上,且ED
=EC,若aABC的边长为1,AE=2,请直接写出CQ的长.
参考答案
一、选择题(本题共12个小题,每小题3分,共36分。在每个小题列出的选项中,选出
符合题目要求的一项)
1.第19届亚运会在浙江杭州举行,下列与杭州亚运会相关的图案中,是轴对称图形的是
()
【分析】根据轴对称图形的概念判断即可.
解:4、不是轴对称图形,不符合题意;
8、不是轴对称图形,不符合题意;
C、不是轴对称图形,不符合题意;
。、是轴对称图形,符合题意;
故选:D.
【点评】本题考查的是轴对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能
够互相重合,这个图形叫做轴对称图形.
2.下列各式:上,《(x+y),士,—.其中分式有()
x27冗x-y
A.1个B.2个C.3个D.4个
【分析】根据分式的定义逐个判断即可.
解:在工,~(x+y)>-红中,其中分式有:—>---共2个.
x2兀x-yxx-y
故选:B.
【点评】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含
有字母则是分式,如果不含有字母则不是分式.
3.下列各分式中,是最简分式的是()
x-yx+y
C.AAD.—7
xyy
【分析】利用最简分式的意义:一个分式的分子与分母没有非零次的公因式时(即分子
与分母互素)叫最简分式最简分式;由此逐一分析探讨得出答案即可.
解:4分子不能分解因式,分子分母没有非零次的公因式,所以是最简分式;
B、分子分解因式为(x+y)(x-y)与分母可以约去(x+y),结果为(x-y),所以不
是最简分式;
C、分子分解因式为x(尤+1),与分母孙可以约去方结果为史以,所以不是最简分式;
y
D、分子分母可以约去y,结果为三,所以不是最简分式.
y
故选:A.
【点评】此题考查最简分式的意义,要把分子与分母因式分解彻底,进一步判定即可.
21
4.若分式三二L的值为0,则X的值为()
x+1
A.0B.1C.-1D.±1
【分析】根据分式为0的条件列出关于x的不等式组,求出x的值即可.
21
解:・・•分式zzl的值为零,
X+1
f2_
X-1=0,解得x=].
,x+lTtO
故选:B.
【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分
母不等于零是解答此题的关键.
5.如图,已知NAOB,求作:ZDEF,使NDEF=NAOB
作法:(1)以点O为圆心,任意长为半径画,分别交04,OB于点尸,Q;
(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点。;
(3)以点。为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;
(4)作射线ERNOEF即为所求作的角.
B
o
根据以上作法,可以判断出△OP。丝尸的方法是()
A.SASB.SSSC.ASAD.AAS
【分析】利用作法得到OP=OQ=EF=E。,PQ=DF,然后根据全等三角形的判定方法
对各选项进行判断.
解:由作法得0P=OQ=EF=ED,PQ=DF,
则可根据"SSS”判断△OP。丝△EOF,从而得到NDEF=N408.
故选:B.
【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;
作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知
直线的垂线).也考查了全等三角形的判定.
6.三个全等三角形按如图的形式摆放,则N1+/2+/3的度数是()
【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出N4+N
9+Z6=180°,Z5+Z7+Z8=180°,进而得出答案.
解:如图所示:
由图形可得:Z1+Z4+Z5+Z8+Z6+Z2+Z3+Z9+Z7-54O0,
♦.•三个全等三角形,
.,.Z4+Z9+Z6=180°,
又;/5+/7+/8=180°,
.,.Z1+Z2+Z3+18O0+180°=540°,
...N1+N2+N3的度数是180°.
【点评】此题主要考查了全等三角形的性质以及三角形内角和定理,正确掌握全等三角
形的性质是解题关键.
7.下列约分结果正确的是()
22
AaEgx-y
BR.---------=x-y
b+mbx-y
「-m+2mT.c6xy2
c・--------:-----=-m+lxy
m-i
【分析】约去分式的分子与分母的公因式即可.
解:人士是最简分式,不能化简,不符合题意.
B、原式=》+丫,不符合题意.
C、原式=-机+1,符合题意.
2
D、原式=>不符合题意.
xy
故选:c.
【点评】本题主要考查了约分,约分时,分子与分母都必须是乘积式,如果是多项式的,
必须先分解因式.
8.若4Cm,2-ri')关于x轴对称的点是4(4,5),则尸Cm,n)的坐标是()
A.(-4,-3)B.(4,7)C.(-4,7)D.(5,-4)
【分析】根据关于x轴对称点的坐标特征:横坐标不变,纵坐标互为相反数可得根=4,
2-n=-5,从而得解.
解:•.•点A(m,2-«)关于x轴对称的点是4(4,5),
4,2-n--5,
解得:,"=4,n=7,
:.PCm,〃)的坐标是P(4,7).
故选:B.
【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.
9.如图,将一张长方形纸片按如图方式折叠,BD、8E为折痕,若/A2E=30。,则/OBC
的度数为()
A.45°B.60°C.75°D.90°
【分析】根据折叠得到NABE=/4'BE,NCBD=NC'BD,推出
ZABE+ZCBD=180°X-1-=90*,即可求出答案•
解:•••一张长方形纸片沿B。、BE折叠,
BE,NCBD=NC'BD,
且NA8E+NA'BE+ZCBD+ZC80=180°,
•••ZABE+ZCBD=180*吟=90。>
,:ZABE=30Q,
:.ZCBD=60°.
故选:B.
【点评】本题考查了折叠的性质,掌握折叠前后两图形全等,即对应角相等,对应相等
相等是关键.
10.如图,△ABC中,AB=10,AC=6,4。平分/BAC,CD±AD,E为BC的中点,则
DE的长为()
A
【分析】先延长CO交A5于点F,根据已知条件证明再根据全等三角
形的性质求出AP,DC=DF,进而求出5尸,证明点。为CF中点,利用三角形中位线定
理求出答案即可.
解:延长。。交A8于点片
・.・AO平分NA4C
:.ZFAD=ZCADf
VCD±AD,
AZADC=ZADF=90Q,
*:AD=AD9
:.^ADF^/\ADC(ASA),
/.AF=AC=6cm,DF=DC,
:.FB=AB-AF=]0-6=4。%,
点。为CF的中点,
•.•点E为8c的中点,
:.DE为LCFB的中位线,
•*-DE=yFB=yX4=2cin,
故选:A.
【点评】本题主要考查了全等三角形的判定和性质、三角形中位线定理,解题关键是熟
练掌握全等三角形的判定和性质、三角形中位线定理.
11.如图,在AABC中,AB的垂直平分线交A8于点。,交BC于点E,连接AE.若BC
=5,AC=4,则aACE的周长为()
A.9B.10C.13D.14
【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.
解:是线段AB的垂直平分线,
:.EA=EB,
;.△ACE的周长=EA+EC+AC=EB+EC+AC=BC+AC=9,
故选:A.
【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段
的两个端点的距离相等是解题的关键.
12.如图,在正方形ABC。中,E,尸分别为A。,BC的中点,P为对角线8。上的一个动
点,则下列线段的长等于AP+EP最小值的是()
A.ABB.DEC.BDD.AF
【分析】连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,依据△
ABF丝ACDE,即可得到AP+EP最小值等于线段AF的长.
解:如图,连接CP,
由AD=CD,NADP=NCDP=45°,DP=DP,可得△AOP畛△€■£(「,
:.AP=CP,
:.AP+PE^CP+PE,
二当点E,P,C在同一直线上时,AP+PE的最小值为CE长,
此时,由A8=C£>,NABF=NCDE,BF=DE,可得
:.AF=CE,
:.AP+EP最小值等于线段AF的长,
故选:D.
【点评】本题考查的是轴对称,最短路线问题,根据题意作出4关于BD的对称点C是
解答此题的关键.
二、填空题(本题共5小题,每小题3分,共15分)
18xy2
13.约分:
27x2y2—―3xy一
【分析】直接利用分式的性质化简得出答案.
18xy2
解:
27x2y23xy'
故答案为:-——•
3xy
【点评】此题主要考查了约分,正确化简分式是解题关键.
14.已知层-。-2=0,则代数式上-士的值为.
aa-12一
【分析】己知等式变形得:。2一“=2,计算异分母分式化简为---代入即可求出所求
a-a
式子的值.
解:已知等式变形得:/-。=2,
11
aa-l
aTa
a(a-l)a(a-l)
1
a(a-l)
1
=~~a2-~a
=■工
5
故答案为-3.
【点评】此题考查了分式的减法运算,熟练掌握运算法则是解本题的关键.
15.等腰三角形的周长为18.其中一条边的长为8,则底边长是2或8.
【分析】由于已知的长为8的边,没有说明是底还是腰,所以要分类讨论,最后要根据
三角形三边关系定理来验证所求的结果是否合理.
解:当腰长为8时,底长为:18-8X2=2;2+8>8,能构成三角形;
当底长为8时,腰长为:(18-8)+2=5;5+5>8,能构成三角形.
故底边长是2或8.
故答案为:2或8.
【点评】本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三
角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类
讨论.
16.如图,点P为NAOB内一点,分别作出尸点关于。B、0A的对称点P2,连接P1P2
交0B于M,交。A于N,若N4O3=40°,则NMPN的度数是100°.
【分析】首先证明NP+NP2=40°,可得/PMN=NPi+/MPPi=2/Pi,/PNM=/
B+NNPP2=2NP2,推出NPMN+NPNM=2X40。=80°,可得结论.
解::尸点关于03的对称点是P”尸点关于OA的对称点是尸2,
:.PM=P\M,PN=P1N,NP2=NP2PN,/PI=NPIPM,
VZAOB=40°,
.♦.NP2Ppi=140°,
・・・NPI+NP2=40°,
:・/PMN=NPi+/MPP\=2/P\,NPNM=NP2+NNPP2=2NP2,
・・・NPMN+NPNM=2X40°=80°,
・・・NMPN=180°-(/PMN+/PNM)=180°-80°=100°,
故答案为:100°.
【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应
点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,
对应的角、线段都相等.
222x+18
17.已知x为整数,且q短+3_乂,十一2g为整数,则所有符合条件的x值的和为」
【分析】首先把分式进行化简,式子的值的是整数的条件是分母是分子的因数,据此即
可确定.
22.2x+182(x-3)-2(x+3)+2x+182x+69
解:百字TFT口=R=有
式子的值是整数,则x-3=±2或土1.
贝Ux=5或1或4或2.
则所有符合条件的x值的和为12.
故答案为:12.
【点评】本题主要考查了分式的值是整数的条件,正确理解条件是解题的关键.
三、解答题(本大题共8小题,共计69分。解答题要写出必要的文字说明、证明过程或演
算步骤。)
18.两个城镇A、8与两条公路ME,MF位置如图所示,其中ME是东西方向公路.现电
信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇4、B的距离必须相等,
到两条公路用尸的距离也必须相等,且在的内部,请在图中,用尺规作图找
出符合条件的点C.(不写己知、求作、作法,只保留作图痕迹)
【分析】到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的
点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为
所求作的点C.
解:如图:
尸
点C即为所求作的点.
【点评】此题考查作图-应用与设计作图,掌握垂直平分线和角平分线的性质,以及尺
规作图的方法是解决问题的关键.
19.计算:
.a2
(1)i-2-;
a-la-i
o
(2)(a-1-2).且•』丝鱼.
'a+1)2+2a
【分析】(1)根据分式的加减法法则进行计算即可;
(2)先算括号里面的,再算乘除,最后算加减即可.
a2
解:(1)1-+2
a-1a-i
a(a+1)2
(a+1)(a~l)(a+1)(a~l)(a+1)(a-l)
a2-1-a2-a+2
(a+1)(a-1)
l-a____
(a+1)(a-1)
1
a+1
⑵(a-l-篝)
a+12+2a
=(白-篝)X2(l+a)
(a-2)2
a^-2ax2(1+a)
a+1(a-2)2
a(a-2)2(Ha)
-a+1(a-2)2
_2a
a-2
【点评】本题考查的是分式的混合运算,在解答此类题目时要注意通分及约分的灵活应
用.
20.如图,点8,F,C,E在同一条直线上,AB=DE,NB=NE,BF=CE.求证:AC//
DF.
【分析】先证明BC=EF,再利用“SAS”可判定AABC丝则根据全等的性质得
ZACB=NDFE,然后根据平行线的判定方法即可得到结论.
【解答】证明::BF=CE,
BF+FC=FC+CE,KPBC=EF,
在△ABC和△DEF中,
'AB=DE
-ZB=ZE«
BC=EF
.♦.△ABC丝△OEF(SAS),
J.ZACB^ZDFE,
J.AC//DF.
【点评】本题考查了全等三角形的判定与性质.在判定三角形全等时,关键是选择恰当
的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时
添加适当辅助线构造三角形.
21.先化简再求值:上丝支+(±.-x+l),请从-1,0,2中选择你喜欢的一个数作
x+1x+1
为x的值代入,求出相应的分式的值.
【分析】先运用公式法进行因式分解,约分,通分,进行化简,后根据分式的分母不能
为零,确定要选择的x值,代入计算即可.
2
解:因为X-4X+4+*x+l)
x+1x+1
2
—(x-2).Z3-X2-X+X+1
-FT":(一忘一)
(x-2)2x+1
x+1(2+x)(2-x)
因为x+1WO,2+xWO,2-xWO,
所以xW-1,x#-2,x#2,
所以x=0,
所以=9?=1
2+x2+0
【点评】本题考查了分式的化简求值,熟练掌握化简,明确分式有意义的条件,正确选
值是解题的关键.
22.如图,在△ABC中,AB^AC,OE是AB的垂直平分线,垂足为。,交AC于E,已知
ZABE=40Q,求/EBC的度数.
【分析】根据线段垂直平分线性质得出AE=BE,推出NA=NA8E=40°,根据等腰三
角形性质和三角形内角和定理求出NA8C,即可求出答案.
解:YOE是AB的垂直平分线,
:.AE=BE,
:.ZA=ZABE,
VZAB£=40°,
.•./A=40°,
":AB=AC,
:.ZABC^ZC^—(180°-NA)=70°,
2
:.ZEBC=ZABC-ZABE=10a-40°=30°.
【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应
用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
23.在直角坐标系中,已知点A(a+b,2-67)与点B(a-5,b-2a)关于y轴对称,
(1)试确定点A、B的坐标;
(2)如果点B关于x轴的对称的点是C,求△A8C的面积.
【分析】(I)根据在平面直角坐标系中,关于y轴对称时,横坐标为相反数,纵坐标不
变,得出方程组求出m%即可解答本题;
(2)根据点3关于x轴的对称的点是C,得出C点坐标,进而利用三角形面积公式求出
即可.
解:(1):点4(a+b,2-a)与点B(a-5,b-2a)关于y轴对称,
.(2~a=b-2a
1a+b+a_5=0
解得:「口,
lb=3
.,.点A、B的坐标分别为:(4,1),(-4,1);
(2)•.•点8关于x轴的对称的点是C,
;.C点坐标为:(-4,-I),
.二△ABC的面积为:—X2X8=8.
【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法以及
三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键.
24.在AABC中,8。和CQ分别平分/ABC和/ACB,过点。作EF〃8C,分别交AB,
AC于点E,F.
(1)若AB=AC,请判断△4EF是否是等腰三角形,并说明理由;
(2)若△ABC的周长为18,BC=6,求尸的周长.
【分析】(1)根据等腰三角形的判定和性质即可得到结论;
(2)根据角平分线的定义和等腰三角形的判定和性质即可得到结论.
解:(1)△AE尸是等腰三角形,
理由:AC,
/ABC=ZACB,
':EF//BC,
:.ZAEF=ZABC,ZAFE=ZACB,
:.NAEF=ZAFE,
...△AEF是等腰三角形;
(2);△ABC的周长为18,BC=6,
:.AB+AC=\S-6=12,
■:BD平分/ABC,
NABD=NCBD,
•:EF//BC,
:.ZEDB=ZDBC,
;.NABD=/EDB,
:.BE=ED,
同理。P=CF,
二/\AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=12.
【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意证得aBOE与△CD尸
是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 杭州市租车合同纠纷责任认定标准
- 妊娠合并心衰的护理业务查房
- 旅游业商业计划书
- 公务员录用合同
- 专业护肤品牌授权合同
- 建筑行业合同样本大全
- 美术在多媒体课件中的应用
- 施工合同质量管理标准范本
- 自信心理健康教育
- 教育设备租赁政府采购合同
- 初二英语-现在完成时课件
- 水泥采购投标方案(技术标)
- 加工工艺改善表
- 10月份企业网上银行电子回单
- 羽毛球英语版介绍PPT
- 2023年DCA考试试题题库
- 丰华医院放射治疗室安全管理制度
- 抗肿瘤药物分类及不良反应
- 中班健康《身体上的洞洞》课件
- 2023年广东珠海农商银行校园招聘笔试历年试题(常考点甄选)含答案带详解
- 湖北2023年中国邮政储蓄银行湖北省分行校园招聘考试参考题库含答案详解
评论
0/150
提交评论