辽宁省大连市高新园区2023年九年级数学第一学期期末质量检测模拟试题含解析_第1页
辽宁省大连市高新园区2023年九年级数学第一学期期末质量检测模拟试题含解析_第2页
辽宁省大连市高新园区2023年九年级数学第一学期期末质量检测模拟试题含解析_第3页
辽宁省大连市高新园区2023年九年级数学第一学期期末质量检测模拟试题含解析_第4页
辽宁省大连市高新园区2023年九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连市高新园区2023年九年级数学第一学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数 B.频数 C.中位数 D.方差2.下列方程属于一元二次方程的是()A. B.C. D.3.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.4.用配方法解一元二次方程时,方程变形正确的是()A. B. C. D.5.已知点,,都在反比例函数的图像上,则()A. B. C. D.6.老师出示了如图所示的小黑板上的题后,小华说:过点;小明说:;小颖说:轴被抛物线截得的线段长为2,三人的说法中,正确的有()A.1个 B.2个 C.3个 D.0个7.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于()A.20° B.30° C.40° D.50°8.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.9.如图所示,是的中线,是上一点,,的延长线交于,()A. B. C. D.10.已知x=1是一元二次方程mx2–2=0的一个解,则m的值是().A. B.2 C. D.1或2二、填空题(每小题3分,共24分)11.如图,⊙O的半径为2,AB是⊙O的切线,A.为切点.若半径OC∥AB,则阴影部分的面积为________.12.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积是__________cm2.13.某种植基地2016年蔬菜产量为100吨,2018年蔬菜实际产量为121吨,则蔬菜产量的年平均增长率为____.14.计算________________.15.如图,在四边形中,,,,分别为,的中点,连接,,.,平分,,的长为__.16.二次函数(其中m>0),下列命题:①该图象过点(6,0);②该二次函数顶点在第三象限;③当x>3时,y随x的增大而增大;④若当x<n时,都有y随x的增大而减小,则.正确的序号是____________.17.若代数式4x2-2x-5与2x2+1的值互为相反数,则x的值是____.18.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.560.600.520.520.490.510.50三、解答题(共66分)19.(10分)例:利用函数图象求方程x2﹣2x﹣2=0的实数根(结果保留小数点后一位).解:画出函数y=x2﹣2x﹣2的图象,它与x轴的公共点的横坐标大约是﹣0.1,2.1.所以方程x2﹣2x﹣2=0的实数根为x1≈﹣0.1,x2≈2.1.我们还可以通过不断缩小根所在的范围估计一元二次方程的根.……这种求根的近似值的方法也适用于更高次的一元方程.根据你对上面教材内容的阅读与理解,解决下列问题:(1)利用函数图象确定不等式x2﹣4x+3<0的解集是;利用函数图象确定方程x2﹣4x+3=的解是.(2)为讨论关于x的方程|x2﹣4x+3|=m解的情况,我们可利用函数y=|x2﹣4x+3|的图象进行研究.①请在网格内画出函数y=|x2﹣4x+3|的图象;②若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解,则m的取值范围为;③若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解x1,x2,x3,x4(x1<x2<x3<x4),满足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.20.(6分)先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.21.(6分)在平面直角坐标系中,直线与反比例函数图象的一个交点为,求的值.22.(8分)如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.23.(8分)如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于E,F两点(点在点F的左侧).(1)过点作于点,如果BE=2,,求MH的长;(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.24.(8分)如图,已知,直线垂直平分交于,与边交于,连接,过点作平行于交于点,连.(1)求证:;(2)求证:四边形是菱形;(3)若,求菱形的面积.25.(10分)定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数(x0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.26.(10分)先化简,再求值:x﹣1(1﹣x)﹣x(1﹣),其中x=1.

参考答案一、选择题(每小题3分,共30分)1、D【分析】要判断成绩的稳定性,一般是通过比较两者的方差实现,据此解答即可.【详解】解:要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的方差.故选:D.【点睛】本题考查了统计量的选择,属于基本题型,熟知方差的意义是解题关键.2、A【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】解:A、该方程符合一元二次方程的定义,符合题意;B、该方程属于二元二次方程,不符合题意;C、当a=1时,该方程不是一元二次方程,不符合题意;D、该方程不是整式方程,不是一元二次方程,不符合题意.故选:A.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.3、D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.4、B【详解】,移项得:,两边加一次项系数一半的平方得:,所以,故选B.5、D【解析】根据反比例函数的解析式知图像在二、四象限,y值随着x的增大而减小,故可作出判断【详解】∵k0,∴反比例函数在二、四象限,y值随着x的增大而减小,又∵,在反比例函数的图像上,,2∴0,点在第二象限,故,∴,故选D.【点睛】此题主要考察反比例函数的性质,找到点在第二象限是此题的关键.6、B【分析】根据图上给出的条件是与x轴交于(1,0),叫我们加个条件使对称轴是,意思就是抛物线的对称轴是是题目的已知条件,这样可以求出的值,然后即可判断题目给出三人的判断是否正确.【详解】∵抛物线过(1,0),对称轴是,∴解得,

∴抛物线的解析式为,

当时,,所以小华正确;∵,所以小明正确;

抛物线被轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y轴或,此时答案不唯一,所以小颖错误.综上,小华、小明正确,

故选:B.【点睛】本题考查了抛物线与轴的交点以及待定系数法求二次函数解析式,利用待定系数法求出抛物线的解析式是解题的关键.7、A【解析】由性质性质得,∠D′=∠D=90°,∠4=α,由四边形内角和性质得∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°.【详解】如图,因为四边形ABCD为矩形,所以∠B=∠D=∠BAD=90°,因为矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,所以∠D′=∠D=90°,∠4=α,因为∠1=∠2=110°,所以∠3=360°-90°-90°-110°=70°,所以∠4=90°-70°=20°,所以α=20°.故选:A【点睛】本题考核知识点:旋转角.解题关键点:理解旋转的性质.8、C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.9、D【分析】作DH∥BF交AC于H,根据三角形中位线定理得到FH=HC,根据平行线分线段成比例定理得到,据此计算得到答案.【详解】解:作DH∥BF交AC于H,

∵AD是△ABC的中线,

∴BD=DC,

∴FH=HC,∴FC=2FH,

∵DH∥BF,,,∴AF:FC=1:6,∴AF:AC=1:7,

故选:D.【点睛】本题考查平行线分线段成比例定理,作出平行辅助线,灵活运用定理、找准比例关系是解题的关键.10、B【分析】根据一元二次方程的解的定义,把x=1代入mx2–2=0可得关于m的一元一次方程,解方程求出m的值即可得答案.【详解】∵x=1是一元二次方程mx2–2=0的一个解,∴m-2=0,解得:m=2,故选:B.【点睛】本题考查一元二次方程的解的定义,把求未知系数的问题转化为方程求解的问题,能够使方程左右两边相等的未知数的值叫做方程的解;熟练掌握定义是解题关键.二、填空题(每小题3分,共24分)11、3π【分析】由切线及平行的性质可知,利用扇形所对的圆心角度数可得阴影部分面积所占的白分比,再用圆的面积乘以百分比即可.【详解】解:AB是⊙O的切线,A.为切点即阴影部分的面积故答案为:.【点睛】本题考查了切线的性质及扇形的面积,熟练掌握圆的切线垂直于过切点的半径这一性质是解题的关键.12、【解析】圆锥侧面积=×4×2π×6=cm2.故本题答案为:.13、10%【分析】2016年到2018年是2年的时间,设年增长率为x,可列式100×=121,解出x即可.【详解】设平均年增长率为x,可列方程100×=121解得x=10%故本题答案应填10%.【点睛】本题考查了一元二次函数的应用问题.14、【分析】根据负整数指数幂的计算法则及立方根的定义进行计算即可.【详解】解:原式=1-8=-1.故答案为:-1.【点睛】本题考查实数的运算,属于常考基础题,明确负整数指数幂的计算法则及立方根的定义是解题的关键.15、.【分析】根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明BM=MN.再证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【详解】在中,、分别是、的中点,,,在中,是中点,,,,,平分,,,,,,,,,.故答案为.【点睛】本题考查了三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用:三角形的中位线平行于第三边,并且等于第三边的一半.16、①④【分析】先将函数解析式化成交点时后,可得对称轴表达式,及与x轴交点坐标,由此可以判断增减性.【详解】解:,对称轴为,①,故该函数图象经过,故正确;②,,该函数图象顶点不可能在第三象限,故错误;③,则当时,y随着x的增大而增大,故此项错误;④当时,即,y随着x的增大而减小,故此项正确.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.17、1或-【解析】由题意得:4x2-2x-5+2x2+1=0,解得:x=1或x=-,故答案为:1或-.18、0.1【解析】利用频率的计算公式进行计算即可.【详解】解:由题意得,这名球员投篮的次数为1110次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.1.故答案为0.1.【点睛】本题考查利用频率估计概率,难度不大.三、解答题(共66分)19、(2)2<x<3,x=4;(2)①见解析,②0<m<2,③m=0.8【分析】画出图象,根据题意通过观察可求解.【详解】解:(2)x2﹣4x+3=0与x轴的交点为(2,0),(3,0),③m=0.8∴x2﹣4x+3<0的解集是2<x<3,画出函数y=x2﹣4x+3和函数y=的图象,可知x2﹣4x+3=的解为x=4,故答案为2<x<3,x=4;(2)①如图:②如图:通过观察图象可知:|x2﹣4x+3|=m有四个不相等的实数解,0<m<2;故答案为0<m<2;③由x4﹣x3=x3﹣x2=x2﹣x2,可得x2、x3是x2x4的三等分点,由图可知,m=0.8时,满足x4﹣x3=x3﹣x2=x2﹣x2.【点睛】本题考查了利用图像解不等式,等式.根据函数解析式画图,数形结合思想是解题的关键20、,-.【分析】先求出程x2+x﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x2+x﹣2=0,∴(x-1)(x+2)=0,∴x1=1,x2=-2,原式=•=,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣.【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.21、【分析】把点A代入直线解析式求出点A的坐标,然后再代入反比例函数解析式求出k值即可.【详解】解:∵直线与反比例函数的图象的一个交点为∴2=-a+4,即a=2∴点A坐标为(2,2)∴,即k=4.【点睛】本题考查了反比例函数和一次函数的交点问题,即点A即在直线上又在双曲线上,代入求值即可.22、(1)y=x-1;(2)当y1>y2时,x<0和x>1.【分析】(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.【详解】解:(1)抛物线y1=x2-2x-1,当x=0时,y=-1,当y=0时,x=1或-1,即A的坐标为(-1,0),B的坐标为(1,0),C的坐标为(0,-1),把B、C的坐标代入直线y2=kx+b得:,解得:k=1,b=-1,即直线BC的函数关系式是y=x-1;(2)∵B的坐标为(1,0),C的坐标为(0,-1),如图,∴当y1>y2时,x的取值范围是x<0或x>1.【点睛】本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.23、(1)MH=;(2)1个.【分析】(1)先根据题意补全图形,然后利用锐角三角函数求出圆的半径即OM的长度,再利用勾股定理求出BM的长度,最后利用可求出MH的长度.(2)过点O作⊥于点,通过等量代换可知∠∠,从而利用角平分线的性质可知,得出为⊙的切线,从而可确定公共点的个数.【详解】解:(1)∵到点的距离等于线段的长的所有点组成图形,∴图形是以为圆心,的长为半径的圆.根据题意补全图形:∵于点M,∴∠.在△中,,∴.∵∴,解得:.∴.在△中,,∴.∵∴∴.(2)解:1个.证明:过点O作⊥于点,∵∠∠,且∠∠,∴∠∠.∴.∴为⊙的切线.∴射线与图形的公共点个数为1个.【点睛】本题主要考查解直角三角形和直线与圆的位置关系,掌握圆的相关性质,勾股定理和角平分线的性质是解题的关键.24、(1)证明见解析;(2)证明见解析;(3)24.【分析】(1)根据线段垂直平分线的性质即可得出答案;(2)先判定AECF是平行四边形,根据对角线垂直,即可得出答案;(3)根据勾股定理求出DE的值,根据“菱形的面积等于对角线乘积的一半”计算即可得出答案.【详解】(1)证明:由图可知,又∵,∴,∴;解:(2)由(1)知:∴四边形是平行四边形,又∵∴是菱形;(3)在中,∴;【点睛】本题考查的是菱形,难度适中,需要熟练掌握菱形的判定以及菱形面积的公式.25、(1)见解析;(2);(3),P点坐标为或【分析】(1)由角平分线求出∠MOP=∠NOP=∠AOB=30°,再证出∠OMP=∠OPN,证明△MOP∽△PON,即可得出结论;(2)由∠MPN是∠AOB的“相关角”,判断出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出,由平行线得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论