宁夏大附属中学2023年数学八上期末检测模拟试题含解析_第1页
宁夏大附属中学2023年数学八上期末检测模拟试题含解析_第2页
宁夏大附属中学2023年数学八上期末检测模拟试题含解析_第3页
宁夏大附属中学2023年数学八上期末检测模拟试题含解析_第4页
宁夏大附属中学2023年数学八上期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏大附属中学2023年数学八上期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.一组不为零的数a,b,c,d,满足,则以下等式不一定成立的是()A.= B.=C.= D.=2.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A.40° B.80° C.90° D.140°3.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.15 C.12或15 D.94.如果,且,那么点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列命题中,是真命题的是()A.同位角相等B.全等的两个三角形一定是轴对称C.不相等的角不是内错角D.同旁内角互补,两直线平行6.已知当时,分式的值为0,当时,分式无意义,则的值为()A.4 B.-4 C.0 D.7.“某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x米,则可得方程.”根据此情境,题中用“×××××”表示得缺失的条件,应补为()A.每天比原计划多铺设10米,结果延期20天才完成任务B.每天比原计划少铺设10米,结果延期20天才完成任务C.每天比原计划多铺设10米,结果提前20天完成任务D.每天比原计划少铺设10米,结果提前20天完成任务8.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A. B. C. D.9.下列四个分式中,是最简分式的是()A. B. C. D.10.若,则的值为()A. B. C. D.11.一个直角三角形的两条边长分别为3cm,4cm,则该三角形的第三条边长为()A.7cm B.5cm C.7cm或5cm D.5cm或12.在实数,3.1415926,,1.010010001…,,中,无理数有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.多项式kx2-9xy-10y2可分解因式得(mx+2y)(3x-5y),则k=_______,m=________.14.在平面直角坐标系中,A(1,0),B(0,2),C(-4,2),若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为________________.15.下面是一个按某种规律排列的数表:第1行1第2行2第3行第4行……那么第n(,且n是整数)行的第2个数是________.(用含n的代数式表示)16.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分线.若在边AB上截取BE=BC,连接DE,则图中共有_________个等腰三角形.17.估计与0.1的大小关系是:_____0.1.(填“>”、“=”、“<”)18.若,则=___________.三、解答题(共78分)19.(8分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由;(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由;(3)小亮将直线MN绕点C旋转到图2的位置,发现DE、AD、BE之间存在着一个新的数量关系,请直接写出这一数量关系。20.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:;B组:;C组:;D组:.请根据上述信息解答下列问题:(1)本次调查数据的中位数落在______组内,众数落在______组内;(2)若A组取,B组取,C组取,D组取,计算这300名学生平均每天在校体育活动的时间;(保留两位小数)(3)若该辖区约有20000名中学生,请你估计其中达到国家体育活动时间的人数.21.(8分)如图,已知.(1)按以下步骤把图形补充完整:的平分线和边的垂直平分线相交于点,过点作线段垂直于交的延长线于点;(2)求证:所画的图形中.22.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.23.(10分)老陶手机店销售型和型两种型号的手机,销售一台型手机可获利元,销售一台型手机可获利元.手机店计划一次购进两种型号的手机共台,其中型手机的进货量不超过型手机的倍设购进型手机台,这台手机的销售总利润为元.(1)求与的关系式.(2)该手机店购进型、型手机各多少台,才能使销售利润最大.24.(10分)计算:(1)(2)(3)(4)解方程组25.(12分)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.26.先化简,再求值:·,其中|x|=2.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【详解】解:一组不为零的数,,,,满足,,,即,故A、B一定成立;设,∴,,∴,,∴,故D一定成立;若则,则需,∵、不一定相等,故不能得出,故D不一定成立.故选:.【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.2、B【解析】由题意得:∠C=∠D,∵∠1=∠C+∠3,∠3=∠2+∠D,∴∠1=∠2+∠C+∠D=∠2+2∠C,∴∠1-∠2=2∠C=80°.故选B.点睛:本题主要运用三角形外角的性质结合轴对称的性质找出角与角之间的关系.3、B【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=1.故选:B.【点睛】本题考查了等腰三角形,灵活根据等腰三角形的性质进行分类讨论是解题的关键.4、B【分析】根据,且可确定出a、b的正负情况,再判断出点的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵,且,∴∴点在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、D【分析】根据平行线的性质对A进行判断;根据轴对称的定义对B进行判断;根据内错角的定义对C进行判断;根据平行线的判定对D进行判断.【详解】解:A、两直线平行,同位角相等,所以A选项为假命题;B、全等的两个三角形不一定是轴对称的,所以B选项为假命题;C、不相等的角可能为内错角,所以C选项为假命题;D、同旁内角互补,两直线平行,所以D选项为真命题.故选D.考点:命题与定理.6、B【分析】根据题意可得,当时,分子,当时,分母,从而可以求得、的值,本题得以解决.【详解】解:当时,分式的值为0,当时,分式无意义,,解得,,,故选B.【点睛】本题考查分式的值为零的条件、分式有意义的条件,解答本题的关键是明确题意,求出、的值.7、C【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.【详解】解:原计划每天铺设管道x米,那么x+10就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间﹣实际用的时间=20天,那么就说明每天比原计划多铺设10米,结果提前20天完成任务.故选:C.【点睛】本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.8、A【分析】设合伙人数为人.羊价为元,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于,的二元一次方程组,此题得解.【详解】解:设合伙人数为人.羊价为元,依题意,得:.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9、A【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】是最简分式;==x+1,不是最简分式;=,不是最简分式;==a+b,不是最简分式.故选A.【点睛】此题主要考查了最简分式的概念,一个分式的分子与分母没有非零次的公因式时叫最简分式,看分式的分子分母有没有能约分的公因式是解题关键.10、A【解析】试题解析:设故选A.11、D【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为,

(1)若4是直角边,则第三边是斜边,由勾股定理得:

,∴;

(2)若4是斜边,则第三边为直角边,由勾股定理得:

,∴;

综上:第三边的长为5或.

故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12、C【分析】根据无理数的定义,即可得到答案.【详解】解:在实数,3.1415926,,1.010010001…,,中,无理数有:,1.010010001…,,共3个;故选:C.【点睛】本题考查了无理数的定义,解答本题的关键是掌握无理数的三种形式.二、填空题(每题4分,共24分)13、k=9m=1【分析】直接利用多项式乘法将原式化简,进而得出关于m,k的等式求出答案即可.【详解】解:∵kx2-9xy-10y2=(mx+2y)(1x-5y),

∴kx2-9xy-10y2=1mx2-5mxy+6xy-10y2=1mx2-(5mxy-6xy)-10y2,

∴解得:故答案为:9,1.【点睛】此题主要考查了十字相乘法的应用,正确利用多项式乘法是解题关键.14、(-3,0)或(5,0)或(-5,4)【解析】根据题意画出符合条件的三种情况,根据图形结合平行四边形的性质、A、B、C的坐标求出即可.【详解】解:

如图有三种情况:①平行四边形AD1CB,

∵A(1,0),B(

0,2),C(-4,2),

∴AD1=BC=4,OD1=3,

则D的坐标是(-3,0);

②平行四边形AD2BC,

∵A(1,0),B(

0,2),C(-4,2),

∴AD2=BC=4,OD2=1+4=5,

则D的坐标是(5,0);

③平行四边形ACD3B,

∵A(1,0),B(

0,2),C(-4,2),

∴D3的纵坐标是2+2=4,横坐标是-(4+1)=-5,

则D的坐标是(-5,4),

故答案为(-3,0)或(5,0)或(-5,4).【点睛】本题考查了坐标与图形性质,平行四边形的性质等知识点,解题的关键是掌握①数形结合思想的运用,②分类讨论方法的运用.15、【分析】根据每一行的最后一个数的被开方数是所在的行数的平方,写出第行的最后一个数的平方是,据此可写出答案.【详解】第2行最后一个数字是:,第3行最后一个数字是:,第4行最后一个数字是:,第行最后一个数字是:,第行第一个数字是:,第行第二个数字是:,故答案为:【点睛】本题考查了规律型-数字变化,解题的关键是确定每一行最后一个数字.16、1.【解析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【详解】∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°−∠DBC−∠C=180°−36°−72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°−36°)÷2=72°,∴∠ADE=∠BED−∠A=72°−36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有1个.故答案为1.考点:等腰三角形的判定17、>【解析】∵.,∴,∴,故答案为>.18、【解析】由,得x−y=y,即x=y,故=.故答案为.三、解答题(共78分)19、(1)全等,理由见解析;(2)见解析;(3)DE=AD−BE.理由见解析【分析】(1)根据同角的余角相等得到∠ACD=∠BCE,证明△ADC≌△CEB即可;(2)根据全等三角形的性质得到BE=CD,CE=AD,结合图形得到结论;(3)与(1)的证明方法类似,证明△ADC≌△CEB即可.【详解】(1)△ADC≌△CEB.理由如下:∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵BE⊥MN,∴∠CBE+∠BCE=90°,∴∠ACD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB;(2)∵△ADC≌△CEB,∴BE=CD,CE=AD,∴DE=CE+CD=AD+BE;(3)DE=AD−BE.证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥MN,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,CD=BE,∴DE=CE−CD=AD−BE.【点睛】此题考查几何变换综合题,全等三角形的判定与性质,旋转的性质,解题关键在于掌握判定定理.20、(1)C;C;(2)1.17小时;(3)12000人.【分析】(1)根据中位数和众数的概念,分析可得答案;(2)根据算术平均数的求法计算即可;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【详解】解:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;根据众数的概念,众数是出现次数最多的,故调查数据的众数落在C组;(2)(小时)(3)达到国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有20000×60%=12000(人).【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数和众数的概念、求算术平均数、用样本估计总体.21、(1)见解析;(2)见解析.【分析】(1)按照要求作出的平分线和边的垂直平分线以及过点作线段垂直于即可;(2)根据角平分线的性质首先得出DF=DM,再利用全等三角形的判定定理求出△AFD≌△AMD,得出AF=AM,再利用垂直平分线的性质得出CD=BD,进而得出Rt△CDF≌Rt△BDM,即可得出CF=BM,即可得解.【详解】(1)如图所示:(2)连接CD、DB,作DM⊥AB于M,如图所示:∵AD平分∠A,DF⊥AC,DM⊥AB∴DF=DM∵AD=AD,∠AFD=∠AMD=90°,∴△AFD≌△AMD(Hl)∴AF=AM∵DE垂直平分线BC∴CD=BD∵FD=DM,∠AFD=∠DMB=90°,∴Rt△CDF≌Rt△BDM(Hl)∴BM=CF∵AB=AM+BM,AF=AC+CF,AF=AM,BM=CF∴AB=AC+2CF∴AB-AC=2CF.【点睛】此题主要考查全等三角形的判定与性质以及垂直平分线的性质和角平分线的性质等知识,解题关键是作好辅助线利用全等求解.22、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴点D1的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D2的坐标为(﹣5,3),当AB为斜边时,如图,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键.注意分类思想的运用.23、(1),(2)台型手机,台型手机.【分析】(1)由总利润等于销售,型手机获得的利润之和,从而可得答案;(2)由型手机的进货量不超过型手机的倍列不等式求解的范围,再利用函数的性质求解最大的销售利润即可得到答案.【详解】解:(1)由题意得:.(2)根据题意得:,解得,,,随的增大而减小,为正整数,当时,取最大值,则,即商店购进台型手机,台型手机才能使销售利润最大.【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论