厦门市大同中学2023-2024学年高一上数学期末经典试题含解析_第1页
厦门市大同中学2023-2024学年高一上数学期末经典试题含解析_第2页
厦门市大同中学2023-2024学年高一上数学期末经典试题含解析_第3页
厦门市大同中学2023-2024学年高一上数学期末经典试题含解析_第4页
厦门市大同中学2023-2024学年高一上数学期末经典试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

厦门市大同中学2023-2024学年高一上数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=02.已知向量,,,若,,则()A. B.C. D.3.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则4.若,则的值是()A. B.C. D.15.函数的部分图象如图,则()A. B.C. D.6.直线与圆x2+y2=1在第一象限内有两个不同的交点,则的取值范围是()A. B.C. D.7.若是第二象限角,是其终边上的一点,且,则()A. B.C. D.或8.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)9.设集合,则=A. B.C. D.10.已知,,则a,b,c的大小关系为A. B.C. D.11.已知函数是定义在上的奇函数,当时,,则不等式的解集为()A. B.C.( D.12.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点,那么的值是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.角的终边经过点,则的值为______14.已知向量,写出一个与共线的非零向量的坐标__________.15._____16.若函数的值域为,则的取值范围是__________三、解答题(本大题共6小题,共70分)17.已知函数f(x)=lnx+2x,若f(x2-4)<2,求实数x的取值范围.18.证明:(1);(2)19.已知函数的定义域是,设(1)求解析式及定义域;(2)若,求函数的最大值和最小值20.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且AD=2PD=2(1)求证:MN∥平面PCD;(2)求证:平面PAC⊥平面PBD;(3)求四棱锥P-ABCD的体积21.已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:012300.71.63.3为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用22.三角形ABC的三个顶点A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上高线AD所在直线的方程

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.2、C【解析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【详解】向量,,,又且,,解得.故选:C.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.3、C【解析】对于A、B、D均可能出现,而对于C是正确的4、D【解析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D5、C【解析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【点睛】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.6、D【解析】如图所示:当直线过(1,0)时,将(1,0)代入直线方程得:m=;当直线与圆相切时,圆心到切线的距离d=r,即,解得:m=舍去负值.则直线与圆在第一象限内有两个不同的交点时,m的范围为.故选D7、C【解析】根据余弦函数的定义有,结合是第二象限角求解即可.【详解】由题设,,整理得,又是第二象限角,所以.故选:C8、C【解析】由题意分别计算出集合的补集和集合,然后计算出结果.【详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C9、C【解析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化10、D【解析】利用指数函数与对数函数的单调性即可得出【详解】解:,,又,故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题11、C【解析】根据奇偶性求分段函数的解析式,然后作出函数图象,根据单调性解不等式即可.【详解】因为当时,,且函数是定义在上的奇函数,所以时,,所以,作出函数图象:所以函数是上的单调递增,又因为不等式,所以,即,故选:C.12、A【解析】根据三角函数的定义计算可得结果.【详解】因为,,所以,所以.故选:A二、填空题(本大题共4小题,共20分)13、【解析】以三角函数定义分别求得的值即可解决.【详解】由角的终边经过点,可知则,,所以故答案为:14、(纵坐标为横坐标2倍即可,答案不唯一)【解析】向量与共线的非零向量的坐标纵坐标为横坐标2倍,例如(2,4)故答案为15、【解析】利用根式性质与对数运算进行化简.【详解】,故答案为:616、【解析】由题意得三、解答题(本大题共6小题,共70分)17、或【解析】利用函数单调性解决抽象不等式.试题解析:因为函数f(x)=lnx+2x在定义域上单调递增,且f(1)=ln1+2=2,所以由f(x2-4)<2得,f(x2-4)<f(1),所以0<x2-4<1,解得-<x<-2或2<x<.18、(1)证明见解析(2)证明见解析【解析】(1)利用三角函数的和差公式,分别将两边化简后即可;(2)利用和2倍角公式构造出齐次式,再同时除以即可证明.【小问1详解】左边===右边===左边=右边,所以原等式得证.【小问2详解】故原式得证.19、(1)g(x)=22x-2x+2,定义域为[0,1](2)最大值为-3,最小值为-4【解析】(1)根据函数,得到f(2x)和f(x+2)的解析式求解;再根据f(x)=2x的定义域是[0,3],由求g(x)的定义域;(2)由(1)得g(x)=22x-2x+2,设2x=t,t∈[1,2],转化为二次函数求解.【小问1详解】解:因为函数,所以f(2x)=22x,f(x+2)=2x+2,所以g(x)=f(2x)-f(x+2)=22x-2x+2,∵f(x)=2x的定义域是[0,3],∴,解得0≤x≤1,∴g(x)的定义域为[0,1]【小问2详解】由(1)得g(x)=22x-2x+2,设2x=t,则t∈[1,2],∴g(t)=t2-4t=,∴g(t)在[1,2]上单调递减,∴g(t)max=g(1)=-3,g(t)min=g(2)=-4∴函数g(x)的最大值为-3,最小值为-420、(1)见解析(2)见解析(3)【解析】(1)先证明平面MEN∥平面PCD,再由面面平行的性质证明MN∥平面PCD;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PBD;(3)利用锥体的体积公式计算即可【详解】(1)证明:取AD的中点E,连接ME、NE,∵M、N是PA、BC的中点,∴在△PAD和正方形ABCD中,ME∥PD,NE∥CD;又∵ME∩NE=E,PD∩CD=D,∴平面MEN∥平面PCD,又MN⊂平面MNE,∴MN∥平面PCD;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,又∵PD⊥底面ABCD,∴PD⊥AC,且PD∩BD=D,∴AC⊥平面PBD,∴平面PAC⊥平面PBD;(3)∵PD⊥底面ABCD,∴PD是四棱锥P-ABCD的高,且PD=1,∴正方形ABCD的面积为S=4,∴四棱锥P-ABCD的体积为VP-ABCD=×S四边形ABCD×PD=×4×1=【点睛】本题考查了空间中的平行与垂直关系的应用问题,也考查了锥体体积计算问题,是中档题21、(1)选择函数模型,函数解析式为;(2)以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.【解析】(1)对题中所给的三个函【解析】对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式,得出结果;(2)根据题意,列出函数解析式,之后应用配方法求得最值,得到结果.【详解】(1)若选择函数模型,则该函数在上为单调减函数,这与试验数据相矛盾,所以不选择该函数模型若选择函数模型,须,这与试验数据在时有意义矛盾,所以不选择该函数模型从而只能选择函数模型,由试验数据得,,即,解得故所求函数解析式为:(2)设超级快艇在AB段的航行费用为y(万元),则所需时间(小时),其中,结合(1)知,所以当时,答:当该超级快艇以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元【点睛】该题考查的是有关函数的应用题,涉及到的知识点有函数模型的正确选择,等量关系式的建立,配方法求二次式的最值,属

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论