版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东德州经开区抬头寺中学2023年九年级数学第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,正方形的边长是4,是的中点,连接、相交于点,则的长是()A. B. C. D.52.如图,在由边长为1的小正方形组成的网格中,点,,,都在格点上,点在的延长线上,以为圆心,为半径画弧,交的延长线于点,且弧经过点,则扇形的面积为()A. B. C. D.3.若m、n是一元二次方程x2-5x-2=0的两个实数根,则m+n-mn的值是()A.-7 B.7 C.3 D.-34.用配方法解方程,下列配方正确的是()A. B.C. D.5.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确6.在美术字中,有些汉字是中心对称图形,下面的汉字不是中心对称图形的是()A. B. C. D.7.中,,是边上的高,若,则等于()A. B.或 C. D.或8.已知二次函数的图象如图所示,则下列结论:①;②;③当时,:④方程有两个大于-1的实数根.其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④9.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.抛物线的项点坐标是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知y是x的二次函数,y与x的部分对应值如下表:x...-1012...y...0343...该二次函数图象向左平移______个单位,图象经过原点.12.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与轴只有一个交点;乙:图象的对称轴是直线丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式__________.13.某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名,若男生小强参加是必然事件,则n=__________.14.如图,两个同心圆,大圆半径,,则图中阴影部分的面积是__________.15.抛物线的顶点坐标是___________.16.已知一扇形,半径为6,圆心角为120°,则所对的弧长为___.17.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.18.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=2.将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,则平移距离为_____.三、解答题(共66分)19.(10分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.20.(6分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.21.(6分)如图在直角坐标系中△ABC的顶点A、B、C三点坐标为A(7,1),B(8,2),C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A'B'C'(要求与△ABC在P点同一侧);(2)直接写出A'点的坐标;(3)直接写出△A'B'C'的周长.22.(8分)如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的长;(2)证明:AF2=FG×FE.23.(8分)我国于2019年6月5日首次完成运载火箭海.上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为千米,仰角为.火箭继续直线上升到达点处,此时海岸边处的雷达测得点的仰角增加,求此时火箭所在点处与处的距离.(保留根号)24.(8分)在平行四边形ABCD中,点E是AD边上的点,连接BE.(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.25.(10分)某日,深圳高级中学(集团)南北校区初三学生参加东校区下午时的交流活动,南校区学生中午乘坐校车出发,沿正北方向行12公里到达北校区,然后南北校区一同前往东校区(等待时间不计).如图所示,已知东校区在南校区北偏东方向,在北校区北偏东方向.校车行驶状态的平均速度为,途中一共经过30个红绿灯,平均每个红绿灯等待时间为30秒.(1)求北校区到东校区的距离;(2)通过计算,说明南北校区学生能否在前到达东校区.(本题参考数据:,)26.(10分)如图,反比例函数的图象与正比例函数的图象交于点,且点的横坐标为2.(1)求反比例函数的表达;(2)若射线上有点,,过点作与轴垂直,垂足为点,交反比例函数图象于点,连接,,请求出的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据勾股定理解得BD的长,再由正方形性质得AD∥BC,所以△AOD∽△EOB,最后根据相似三角形性质即可解答,【详解】解:∵四边形ABCD是正方形,边长是4,∴BD=,,∵是的中点,AD∥BC,所以BC=AD=2BE,∴△AOD∽△EOB,∴,∴OD=BD=×4=.故选:C.【点睛】本题考查正方形性质、相似三角形的判定和性质,解题关键是熟练掌握相似三角形的判定和性质.2、B【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC,则r=AC=扇形的圆心角度数为∠BAD=45°,∴扇形的面积==故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.3、B【解析】解:∵m、n是一元二次方程x2-5x-2=0的两个实数根,∴m+n=5,mn=-2,∴m+n-mn=5-(-2)=1.故选A.4、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:等式两边同时加上一次项系数的绝对值一半的平方22,,∴;故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、A【分析】如图1,根据线段垂直平分线的性质得到,,则根据“”可判断,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形为平行四边形,则根据平行四边形的性质得到,,则根据“”可判断,则可对乙进行判断.【详解】解:如图1,垂直平分,,,而,,所以甲正确;如图2,,,∴四边形为平行四边形,,,而,,所以乙正确.故选:A.【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.6、A【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项不符合题意;故选:A.【点睛】本题考查中心对称图形的概念,解题的关键是熟知中心图形的定义.7、B【分析】根据题意画出图形,当△ABC中为锐角三角形或钝角三角形两种情况解答,结合已知条件可以推出△ABD∽△BCD,即可得出∠ABC的度数.【详解】(1)如图,当△ABC中为锐角三角形时,
∵BD⊥AC,∴△ABD∽△BCD,
∵∠A=30°,
∴∠ABD=∠C=60°,∠A=∠CBD=30°,
∴∠ABC=90°.
(2)如图,当△ABC中为钝角三角形时,
∵BD⊥AC,∴△ABD∽△BCD,
∵∠A=30°,
∴∠ABD=∠DCB=60°,∠A=∠DBC=30°,
∴∠ABC=30°.
故选择B.【点睛】本题考查了相似三角形的判定与性质,将三角形分锐角三角形和钝角三角形分别讨论是解题的关键.8、B【分析】①由二次函数的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于二次函数图象与x轴有两个交点即有两个不相等的实数根,由此即可判定的符号;③根据图象知道当x<0时,y不一定小于0,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【详解】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵二次函数图象与x轴有两个交点即有两个不相等的实数根,即,故选项②正确;③当x<0时,有部分图象在y的上半轴即函数值y不一定小于0,故选项③错误;④利用图象与x轴交点都大于-1,故方程有两个大于-1的实数根,故选项④正确;故选:B.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:当时,,然后根据图象判断其值.9、C【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【详解】解:A、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;B、此图形是轴对称图形,不是中心对称图形,此选项不符合题意;C、此图形是轴对称图形,也是中心对称图形,此选项符合题意;D、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;故选:C.【点睛】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.10、D【分析】由二次函数顶点式:,得出顶点坐标为,根据这个知识点即可得出此二次函数的顶点坐标.【详解】解:由题知:抛物线的顶点坐标为:故选:D.【点睛】本题主要考查的二次函数的顶点式的特点以及顶点坐标的求法,掌握二次函数的顶点式是解题的关键.二、填空题(每小题3分,共24分)11、2【分析】利用表格中的对称性得:抛物线与x轴另一个交点为(2,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x==1.∵抛物线与x轴的一个交点为(-1,0),∴抛物线与x轴另一个交点为(2,0),∴该二次函数图象向左平移2个单位,图象经过原点;或该二次函数图象向右平移1个单位,图象经过原点.故填为2.【点睛】本题考查了二次函数图象与几何变换-平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决.12、(答案不唯一)【解析】利用二次函数的顶点式解决问题即可.【详解】由题意抛物线的顶点坐标为(3,0),设抛物线的解析式为y=a(x﹣3)1.∵开口向下,可取a=-1,∴抛物线的解析式为y=-(x﹣3)1.故答案为y=-(x﹣3)1(答案不唯一).【点睛】本题考查了抛物线与x轴的交点,二次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、1;【解析】根据必然事件的定义可知三名男生都必须被选中,可得答案.【详解】解:∵男生小强参加是必然事件,∴三名男生都必须被选中,∴只选1名女生,故答案为1.【点睛】本题考查的是事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14、【分析】根据题意可知,阴影部分的面积等于半径为4cm,圆心角为60°的扇形面积.【详解】∵,,∴阴影部分的面积为扇形OBC的面积:,故答案为:.【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式是解决本题的关键.15、(1,﹣4).【解析】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).16、4π.【分析】根据弧长公式求弧长即可.【详解】此扇形的弧长==4π,故答案为:4π.【点睛】此题考查的是求弧长,掌握弧长公式:是解决此题的关键.17、1【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.18、1或1【分析】过点P作PC⊥x轴于点C,连接PA,由垂径定理得⊙P的半径为2,因为将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,分两种情况进行讨论求值即可.由【详解】解:过点P作PC⊥x轴于点C,连接PA,AB=,,点P的坐标为(1,-1),PC=1,,将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,①当沿着y轴的负方向平移,则根据切线定理得:PC=PA=2即可,因此平移的距离只需为1即可;②当沿着y轴正方向移动,由①可知平移的距离为3即可.故答案为1或1.【点睛】本题主要考查圆的基本性质及切线定理,关键是根据垂径定理得到圆的半径,然后进行分类讨论即可.三、解答题(共66分)19、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根据一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答案;(2)先把常数项移项,再把方程两边同时加上一次项系数一半的平方,即可得完全平方式,直接开平方即可得答案.【详解】(1)3x2﹣x﹣4=1∵a=3,b=-1,c=-4,∴∴x1=,x1=-1.(2)x2﹣4x﹣5=1x2﹣4x+4=5+4(x﹣2)2=9∴x-2=3或x-2=-3∴x1=5,x2=-1.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.20、(1)证明见详解;(2);(3)30°或45°.【分析】(1)由题意:∠E=90°-∠ADE,证明∠ADE=90°-∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,,由BD:DE=2:3,可得cos∠ABC=;(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【详解】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE=(∠ABC+∠BAC)=90°-∠C,∴∠E=90°-(90°-∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC=;(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°;②当∠C=∠DAE=90°时,∠E=∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°;综上所述,∠ABC=30°或45°.【点睛】本题属于相似形综合题,考查相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题.21、(1)见解析;(2)A′(﹣3,3),B′(0,6),C′(0,3);(3).【分析】(1)延长PB到B′,使PB′=3PB,延长PA到B′,使PA′=3PA,延长PC到C′,使PC′=3PC;顺次连接A′、B′、C′,即可得到△A'B'C′;(2)利用(1)所画图形写出A′点的坐标即可;(3)利用勾股定理计算出A′B′、B′C′、A′C′,然后求它们的和即可.【详解】(1)如图,△A′B′C′,为所作;(2)A′、B′、C′三点的坐标分别是:A′(﹣3,3),B′(0,6),C′(0,3);(3)A′B′==3,A′C′==3,B′C′==3,所以△A′B′C′的周长=3+3+3=.【点睛】本题考查作图——位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.22、(1)1;(2)证明见解析【解析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴,即,解得,CG=1;(2)∵AB∥CD,∴△DFG∽△BFA,∴,∴AD∥CB,∴△AFD∽△EFB,∴,∴,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23、火箭所在点处与处的距离.【分析】在RT△AMN中根据30°角的余弦值求出AM和MN的长度,再在RT△BMN中根据45°角的求出BM的长度,即可得出答案.【详解】解:在中,在中,,答:火箭所在点处与处的距离.【点睛】本题考查解直角三角形,难度适中,解题关键是根据题目意思构造出直角三角形,再利用锐角三角函数进行求解.24、(1)26;(2)见解析【分析】(1)由平行四边形的性质得出AD=BC=8,AB=CD,AD∥BC,由平行线的性质得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,则AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出结果;(2)连接CE,过点C作CK∥BF交BE于K,则∠FBG=∠CKG,由点G是CF的中点,得出FG=CG,由AAS证得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四边形的性质得出∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,由平行线的性质得出∠DEC=∠BCE,∠AEB=∠KBC,易证∠EKC=∠D,∠CKB=∠BAE,由AAS证得△AEB≌△KBC,得出BC=BE,则∠KEC=∠BCE,推出∠KEC=∠DEC,由AAS证得△KEC≌△DEC,得出KE=ED,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,∴AD=BC=8,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE=AD﹣ED=BC﹣ED=8﹣3=5,∴AB=5,∴平行四边形ABCD的周长=2AB+2BC=2×5+2×8=26;(2)连接CE,过点C作CK∥BF交BE于K,如图2所示:则∠FBG=∠CKG,∵点G是CF的中点,∴FG=CG,在△FBG和△CKG中,∵,∴△FBG≌△CKG(AAS),∴BG=KG,CK=BF=CD,∵四边形ABCD是平行四边形,∴∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,∴∠DEC=∠BCE,∠AEB=∠KBC,∵∠FBE+∠ABC=180°,∴∠FBE+∠D=180°,∴∠CKB+∠D=180°,∴∠EKC=∠D,∵∠BAE+∠D=180°,∴∠CKB=∠BAE,在△AEB和△KBC中,∵,∴△AEB≌△KBC(AAS),∴BC=EB,∴∠KEC=∠BCE,∴∠KEC=∠DEC,在△KE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工劳动合同协议书完整版
- 农村建房包工合同范本
- 2024年度知识产权许可合同:专利技术授权使用条款3篇
- 2024年度农业现代化技术推广合同
- 委托代理采购商品合同范本
- 工程款抵房合同协议书范本篇
- 高中青春励志课件
- 二零二四年度工程资金管理与融资服务合同3篇
- 服装采购合同范文模板
- 房屋修缮安全合同协议书范本
- 宣讲教育家精神六个方面微课PPT
- 中考英语时态专项练习题(附答案)
- 计算机控制系统论文
- 地下工程监测与检测技术-第六章-地下工程中的地质雷达测试技术
- 工科中的设计思维学习通超星课后章节答案期末考试题库2023年
- 教科版科学五年级上册第7课 计量时间和我们的生活课件
- 华为认证 HCIA-Security 安全 H12-711考试题库(共800多题)
- 国开电大《小学数学教学研究》形考任务3答案
- 畜牧兽医专业课程与教学改革实施方案
- 电工仪表及测量课件
- 教师个人成长档案电子模板
评论
0/150
提交评论