版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页中考数学总复习《三角形中位线综合》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB=13,AC=10,请求出线段EF的长.2.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.3.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连结DE,F在DE延长线上,且AF=AE,(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.4.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.5.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.6.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.7.阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底和,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC,∵E、F是AB、CD的中点,∴EF∥AD∥BC,EF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点请你运用所学知识,结合上述材料,解答下列问题.如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.8.如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.9.已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边的延长线上时,如图1所示,易证MF+FN=BE.(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)10.如图,在直角梯形ABCD中,AD∥BC,AD⊥DC,点A关于对角线BD的对称点F刚好落在腰DC上,连接AF交BD于点E,AF的延长线与BC的延长线交于点G,M,N分别是BG,DF的中点.(1)求证:四边形EMCN是矩形;(2)若AD=2,S梯形ABCD=,求矩形EMCN的长和宽.11.如图,已知平行四边形及四边形外一直线,四个顶点到直线的距离分别为.(1)观察图形,猜想得出满足怎样的关系式?证明你的结论.(2)现将向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.12.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.13.如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点(1)求证:四边形EFGH为正方形;(2)若AD=2,BC=4,求四边形EFGH的面积.14.在中,,将绕点B顺时针旋转得到,其中点A,C的对应点分别为点,.(1)如图1,当点落在的延长线上时,求的长;(2)如图2,当点落在的延长线上时,连接,交于点M,求的长;(3)如图3,连接,直线交于点D,点E为的中点,连接.在旋转过程中,是否存在最小值?若存在,求出的最小值;若不存在,请说明理由.参考答案:1.试题分析:(1)由菱形的性质及直角三角形斜边上的中线等于斜边的一半,即可得到结论;(2)由勾股定理得出BO的长,再利用三角形中位线定理得出EF的长.试题解析:(1)△OEF是等腰三角形,理由:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∵点E,F分别是边AB,AD的中点,∴EO=AB,OF=AD,∴EO=FO,∴△OEF是等腰三角形;(2)∵四边形ABCD是菱形,AC=10,∴AO=5,∠AOB=90°,∴BO===12,∴BD=24,∵点E,F分别是边AB,AD的中点,∴EFBD,∴EF=12.考点:1.菱形的性质;2.勾股定理;3.三角形中位线定理.2.(1)证明:∵BN⊥AN于点N,∴,在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA).∴BN=DN.(2)∵△ABN≌△ADN,∴AD=AB=10,DN=NB.又∵点M是BC中点,∴MN是△BDC的中位线.∴CD=2MN=6.∴△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.3.解:(1)∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.4.(1)如图,连接ON,∵CD是Rt△ABC斜边AB上的中线,∴AD=CD=DB,∴∠DCB=∠DBC,又∵OC=ON,∴∠DCB=∠ONC,∴∠ONC=∠DBC,∴ON∥AB,∵NE是⊙O的切线,ON是⊙O的半径,∴∠ONE=90°,∴∠NEB=90°,即NE⊥AB;(2)如图所示,由(1)可知ON∥AB,∵OC=OD,∴∴CN=NB=CB,又∵CD是⊙O的直径,∴∠CMD=90°,∵∠ACB=90°,∴∠CMD+∠ACB=180°,∴MD//BC,又∵D是AB的中点,∴MD=CB,∴MD=NB.5.解:(1)∵DB⊥BC,BC=4,CD=5∴BD==3;(2)延长CB,过点A作AE⊥CB延长线于点E∵DB⊥BC,AE⊥BC∴AE∥DB∵D为AC边的中点∴BD=AE∴AE=6即BC边上高的长为6.6.(1)证明:∵D、E分别为AB、AC的中点,∴,,∵延长BC至点F,使,∴,;(2)解:∵,,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴.7.解:(1)∵AD∥BC,∴∠ADO=∠DBC=30°,∴在Rt△AOD和Rt△BOC中,OA=AD,OC=BC,∴AC=OA+OC=(AD+BC),∵EF=(AD+BC),∴AC=EF;(2)∵AD∥BC,∴∠ADO=∠DBC=30°,∴在Rt△AOD和Rt△BOC中,OA=AD,OC=BC,∵OD=,OC=5,∴OA=3,∵AD∥EF,∴∠ADO=∠OMN=30°,∴ON=MN,∵AN=AC=(OA+OC)=4,∴ON=AN﹣OA=4﹣3=1,∴MN=2ON=2.8.试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可.(2)根据平行四边形的对角线相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.试题解析:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线.∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC.∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF.∴∠DAH=∠DHA,∠FAH=∠FHA.∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC.∴∠DHF=∠DEF.考点:1.三角形中位线定理;2.直角三角形斜边上的中线性质;3.平行四边形的判定.9.(1)答:不成立,猜想:FN-MF=BE,理由如下:证明:如图2,连接AD,∵M、N分别是DE、AE的中点,∴MN=AD,又∵在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵MN=FN-MF,∴FN-MF=BE;(2)图3结论:MF-FN=BE,证明:如图3,连接AD,∵M、N分别是DE、AE的中点,∴MN=AD,∵在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∴MN=BE,∵MN=FM-FN,∴MF-FN=BE.10.解:(1)证明:∵点A、F关于BD对称,∴AD=DF,DE⊥AF.又∵AD⊥DC,∴△ADF、△DEF是等腰直角三角形.∴∠DAF=∠EDF=45°.∵AD∥BC,∴∠G=∠GAF=45°.∴△BGE是等腰直角三角形.∵M,N分别是BG,DF的中点,∴EM⊥BC,EN⊥CD.又∵AD∥BC,AD⊥DC,∴BC⊥CD.∴四边形EMCN是矩形.(2)由(1)可知,∠EDF=45°,BC⊥CD,∴△BCD是等腰直角三角形.∴BC=CD,∴S梯形ABCD=(AD+BC)•CD=(2+CD)•CD=,即CD2+2CD﹣15=0,解得CD=3,CD=﹣5(舍去).∵△ADF、△DEF是等腰直角三角形,∴DF=AD=2.∵N是DF的中点,∴EN=DN=DF=×2=1,∴CN=CD﹣DN=3﹣1=2,∴矩形EMCN的长和宽分别为2,1.11.(1).证明:连结,且相交于点,为点到的距离,∴OO1为直角梯形的中位线,∴;同理:.∴.(2)不一定成立.分别有以下情况:直线过点时,;直线过点与点之间时,;直线过点时,;直线过点与点之间时,;直线过点时,;直线过点与点之间时,;直线过点时,;直线过点上方时,.12.证明:(1)∵四边形ABCD是矩形,∵AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD.BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB≌△NDC,∵,∴△MAB≌△NDC;(2)四边形MPNQ是菱形,理由如下:连接AN,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,∵DM=BN,DQ=BP,∠MDQ=∠NBP,∴△MQD≌△NPB.∴四边形MPNQ是平行四边形,∵M是AB中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∴MP=BM,∴MP=MQ,∴四边形MQNP是菱形.13.(1)证明:在△ABC中,E、F分别是AB、BC的中点,EF=AC.同理FG=BD,GH=AC,HE=BD.∵在梯形ABCD中,AB=DC,∴AC=BD.∴EF=FG=GH=HE,∴四边形EFGH是菱形.设AC与EH交于点M,在△ABD中,E、H分别是AB、AD的中点,则EH∥BD,同理GH∥AC.又∵AC⊥BD,∴∠BOC=90°.∴∠EHG=∠EMC=90°.∴四边形EFGH是正方形.(2)解:连接EG.在梯形ABCD中,∵E、F分别是AB、DC的中点,∴.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 下雪留言句子
- 如何像英国人一样说英语
- 《继电保护原则》课件
- 生物:《多聚酶链式反应扩增DNA片段》课件新人教版选修
- 《水泵安装技术》课件
- 艺术非遗主题地产暖场活动活动策划方案
- 小红书游戏行业KFS投放方案
- 【语文】《荷塘月色》同步练习+2024-2025学年统编版高中语文必修上册
- 2024年新高一物理初升高衔接《力学单位制》含答案解析
- 性问题教育教育课件
- 四年级上册《海西》教案
- 亮化照明维护服务方案
- 大象版2022-2023三年级科学上册3.2《溶解与搅拌》课件
- 《人体解剖学》课程思政教学设计案例(一等奖)
- DB44∕T 858-2011 空调器高处作业安全规范
- 实验室十大危险操作和安全隐患
- 妇幼保健院关于修订岗位轮转制度
- 气候影响着人类活动人类活动对气候的影响
- 顶管及盾构施工技术及特点(62页)
- 生产部管理人员考试题(新进转正)范本
- 高中研究性学习如何选择、确立研究性学习课题PPT通用PPT课件
评论
0/150
提交评论