2024届安阳市第九中学八年级数学第二学期期末质量检测试题含解析_第1页
2024届安阳市第九中学八年级数学第二学期期末质量检测试题含解析_第2页
2024届安阳市第九中学八年级数学第二学期期末质量检测试题含解析_第3页
2024届安阳市第九中学八年级数学第二学期期末质量检测试题含解析_第4页
2024届安阳市第九中学八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安阳市第九中学八年级数学第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某中学书法兴趣小组10名成员的年龄情况如下表:年龄/岁14151617人数3421则该小组成员年龄的众数和中位数分别是()A.15,15 B.16,15 C.15,17 D.14,152.已知,则的值是()A. B.5 C. D.63.如图是某公司今年1~5月份的收入统计表(有污染,若2月份,3月份的增长率相同,设它们的增长率为x,根据表中信息,可列方程为()月份12345收入/万元1▄45▄A.(1+x)2=4﹣1 B.(1+x)2=4C.(1+2x)2=7 D.(1+x)(1+2x)=44.下列各式中,正确的是()A.2<<3 B.3<<4 C.4<<5 D.14<<165.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.12 B.15 C.16 D.186.下列各选项中因式分解正确的是()A. B.C. D.7.在四边形中,对角线,相交于点,,,添加下列条件,不能判定四边形是菱形的是().A. B. C. D.8.如图,直线经过点A(a,)和点B(,0),直线经过点A,则当时,x的取值范围是()A.x>-1 B.x<-1 C.x>-2 D.x<-29.若反比例函数y=(k≠0)的图象经过点P(﹣2,6),则k的值是()A.﹣3 B.3 C.12 D.﹣1210.下列函数中,随的增大而减少的函数是()A. B. C. D.11.已知反比例函数,则下列结论正确的是()A.其图象分别位于第一、三象限B.当时,随的增大而减小C.若点在它的图象上,则点也在它的图象上D.若点都在该函数图象上,且,则12.如图,边长为2的菱形ABCD中,∠A=60º,点M是边AB上一点,点N是边BC上一点,且∠ADM=15º,∠MDN=90º,则点B到DN的距离为()A. B. C. D.2二、填空题(每题4分,共24分)13.如图,菱形ABCD的对角线AC、BD相交于点O,若AC=8,BD=6,则该菱形的周长是___.14.端午期间,王老师一家自驾游去了离家170km的某地,如图是他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象,当他们离目的地还有20km时,汽车一共行驶的时间是_____.15.已知分式,当x=1时,分式无意义,则a=___________.16.计算:=_______.17.如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.18.9的算术平方根是.三、解答题(共78分)19.(8分)如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=52,求AG的长.20.(8分)已知,,求下列代数式的值:(1)x2+y2;(2).21.(8分)(感知)如图①在等边△ABC和等边△ADE中,连接BD,CE,易证:△ABD≌△ACE;(探究)如图②△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求证:△ABD∽△ACE;(应用)如图③,点A的坐标为(0,6),AB=BO,∠ABO=120°,点C在x轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为.22.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,的顶点均在格点上,点A的坐标为,点B的坐标为,点C的坐标为.(1)以点C为旋转中心,将旋转后得到,请画出;(2)平移,使点A的对应点的坐标为,请画出;(3)若将绕点P旋转可得到,则点P的坐标为___________.23.(10分)关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.24.(10分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端到地面距离为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端到地面距离为2米,求小巷的宽度.25.(12分)“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2∶3∶5的比例纳入总分.最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:序号123456笔试成绩/分669086646584专业技能测试成绩/分959293808892说课成绩/分857886889485(1)写出说课成绩的中位数、众数;(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这6名选手中序号是多少的选手将被录用?为什么?26.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

10名成员的年龄中,15岁的人数最多,因此众数是15岁,从小到大排列后,处在第5,6位两个数的平均数是15岁,因此中位数是15岁.【题目详解】解:15岁出现的次数最多,是4次,因此众数是15岁,从小到大排列后处在第5、6位的都是15,因此中位数是15岁.故选:A.【题目点拨】本题考查中位数、众数的意义及求法,出现次数最多的数是众数,从小到大排列后处在中间位置的一个或两个数的平均数是中位数.2、D【解题分析】

利用非负性,得到,解出与的值,即可解得.【题目详解】由得:则:所以:,故答案选D.【题目点拨】本题考查了绝对值与二次根式的非负性,解答即可.3、B【解题分析】

设2月份,3月份的增长率为x,根据等量关系:1月份的收入×(1+增长率)2=1,把相关数值代入计算即可.【题目详解】解:设2月份,3月份的增长率为x,依题意有1×(1+x)2=1,即(1+x)2=1.故选:B.【题目点拨】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.4、B【解题分析】试题解析:故选B.5、C【解题分析】

根据已知及全等三角形的判定可得到△ABC≌△CDE,从而得到b的面积=a的面积+c的面积.【题目详解】如图:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°

∴∠ACB=∠DEC

∵∠ABC=∠CDE,AC=CE,在△ABC和△CDE中,∴△ABC≌△CDE(AAS),

∴BC=DE

∴根据勾股定理的几何意义,b的面积=a的面积+c的面积

∴b的面积=a的面积+c的面积=5+11=1.故选:C【题目点拨】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.6、D【解题分析】

直接利用公式法以及提取公因式法分解因式进而判断即可.【题目详解】解:A.,故此选项错误;B.,故此选项错误;C.,故此选项错误;D.,正确.故选D.【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.7、B【解题分析】

由,,证出四边形是平行四边形,A.,根据邻边相等的平行四边形,可证四边形是菱形;B.,对角线相等的平行四边形是矩形,不能证四边形是菱形;C.,根据对角线互相垂直的平行四边形是菱形,可证四边形是菱形;D.,证,根据等角对等边可证,即可证得四边形是菱形.【题目详解】,,四边形是平行四边形,A.,是菱形;B.,是矩形,不是菱形;C.,是菱形;D.,是菱形;故本题的答案是:B【题目点拨】本题考查了特殊四边形菱形的证明,平行四边形的证明,矩形的证明,注意对这些证明的理解,容易混淆,小心区别对比.8、A【解题分析】

先求出点A坐标,再结合图象观察出直线直线在直线下方的自变量x的取值范围即可.【题目详解】把A(a,-2)代入y2=2x,得-2=2a,解得:a=-1,所以点A(-1,-2),观察图象可知当x>-1时,,故选A.【题目点拨】本题考查了一次函数与一元一次不等式,观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.注意数形结合思想的运用.9、D【解题分析】

根据反比例函数y=(k≠0)的图象经过点P(﹣2,6),从而可以求得k的值.【题目详解】解:∵反比例函数y=(k≠0)的图象经过点P(﹣2,6),∴,得k=﹣12,故选:D.【题目点拨】本题考查的是反比例函数,熟练掌握反比例函数是解题的关键.10、D【解题分析】

根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.【题目详解】A、B、C选项中的函数解析式k值都是正数,y随x的增大而增大,D选项y=-2x+8中,k=-2<0,y随x的增大而减少.故选D.【题目点拨】本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.11、C【解题分析】

根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【题目详解】解:反比例比例系数的正负决定其图象所在象限,当时图象在第一、三象限;当时图象在二、四象限,由题可知,所以A错误;当时,反比例函数图象在各象限内随的增大而减小;当时,反比例函数图象在各象限内随的增大而增大,由题可知,当时,随的增大而增大,所以B错误;比例系数:如果任意一点在反比例图象上,则该点横纵坐标值的乘积等于比例系数,因为点在它的图象上,所以,又因为点的横纵坐标值的乘积,所以点也在函数图象上,故C正确当时,反比例函数图象在各象限内随的增大而增大,由题可知,所以当时,随的增大而增大,而D选项中的并不确定是否在同一象限内,所以的大小不能粗糙的决定!所以D错误;故选:C【题目点拨】本题考查了反比例函数的性质,熟悉反比例函数的图象和性质是解题的关键.12、B【解题分析】

连接BD,作BE⊥DN于E,利用菱形的性质和已知条件证得△ABD和△BCD是等边三角形,从而证得BD=AB=AD=2,∠ADB=∠CDB=60°,进而证得△BDE是等腰直角三角形,解直角三角形即可求得点B到DN的距离.【题目详解】解:连接BD,作BE⊥DN于E,∵边长为2的菱形ABCD中,∠A=60°,∴△ABD和△BCD是等边三角形,∴BD=AB=AD=2,∠ADB=∠CDB=60°∵∠A=60°,∴∠ADC=180°-60°=120°,∵∠ADM=15°,∠MDN=90°,∴∠CDN=120°-15°-90°=15°,∴∠EDB=60°-15°=45°,∴BE=BD=,∴点B到DN的距离为,故选:B.【题目点拨】本题考查了菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形等,作出辅助线,构建等腰直角三角形是解题的关键.二、填空题(每题4分,共24分)13、20【解题分析】

根据菱形的对角线互相垂直及勾股定理即可求解.【题目详解】依题意可知BD⊥AC,AO=4,BO=3∴AB==5,∴菱形的周长为4×5=20【题目点拨】此题主要考查菱形的周长计算,解题的关键是熟知菱形的对角线垂直.14、2.25h【解题分析】

根据待定系数法,可得一次函数解析式,根据函数值,可得相应自变量的值【题目详解】设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170)解得∴AB段函数的解析式是y=80x-30离目的地还有20千米时,即y=170-20=150km,当y=150时,80x-30=150解得:x=2.25h,故答案为:2.25h【题目点拨】此题考查函数的图象,看懂图中数据是解题关键15、1【解题分析】

把x=1代入分式,根据分式无意义得出关于a的方程,求出即可【题目详解】解:把x=1代入得:,此时分式无意义,

∴a-1=0,

解得a=1.

故答案为:1.【题目点拨】本题考查了分式无意义的条件,能得出关于a的方程是解此题的关键.16、2+1【解题分析】试题解析:=.故答案为.17、【解题分析】

过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.【题目详解】解:如图,过D作DF⊥AB于F,∵AD平分∠BAC,∠C=90°,∴DF=CD=2.∵Rt△ABC中,∠C=90°,AC=BC,∴∠ABC=45°,∴△BDF是等腰直角三角形,∵BF=DF=2,BD=DF=2,∴BC=CD+BD=2+2,AC=BC=2+2.∵AE//BC,BE⊥AD,∴四边形ADBE是平行四边形,∴AE=BD=2,∴平行四边形ADBE的面积=.故答案为.【题目点拨】本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.18、1.【解题分析】

根据一个正数的算术平方根就是其正的平方根即可得出.【题目详解】∵,∴9算术平方根为1.故答案为1.【题目点拨】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.三、解答题(共78分)19、(1)见解析;(2)64;(3)24【解题分析】

(1)证明ΔADF≅ΔCDE,根据全等三角形的性质得到∠ADF=∠CDE,根据垂直的定义证明;(2)根据三角形的外角的性质、等腰三角形的判定定理得到GE=GF,根据三角形的周长公式求出BA,根据正方形的面积公式计算;(3)作HP⊥HC交CB的延长线于点P,证明ΔHDC≅ΔHEP,得到DC=PE=8,CH=HP=52,根据勾股定理列方程求出EG【题目详解】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠DAF=∠DCE=90°,在ΔADF和ΔCDE中,AD=CD∠DAF=∠DCE∴ΔADF≅ΔCDE(SAS)∴∠ADF=∠CDE,∵∠ADE+∠CDE=90°,∴∠ADF+∠ADE=90°,即∠FDE=90°,∴DE⊥DF;(2)解:∵∠BGE=2∠BFE,∠BGE=∠BFE+∠GEF,∴∠GEF=∠GFE,∴GE=GF,∵ΔBGE的周长为16∴BE+GB+GE=16∴BE+GB+GF=16∴BE+BA+AF=16∵CE=AF,∴BA+CB=16,∴BC=BA=8,∴===A=64;(3)过点H作HP⊥HC交CB的延长线于点P,∵GF=GE,DF=DE,∴DG垂直平分EF,∵∠FDE=90°,∴DH=EH,∠DHE=∠PHC=90°,∴∠DHE-∠EHC=∠PHC-∠EHC,即∠DHC=∠EHP,∵在四边形DHEC中,∠HDC+∠HEC=180°,∠HEC+∠HEP=180°,∴∠HEP=∠HDC,在ΔHDC和ΔHEP中,∠DHC=∠EHPDH=EH∴ΔHDC≅ΔHEP(ASA)∴DC=PE=8,CH=HP=52∴在RtΔPHC中,∴EC=PC-PE=2,∴AF=2,BE=6,在RtΔBGE中,设EG=x,则由勾股定理得,(10-x)解得:x=34∴AG=GF-AF=24【题目点拨】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.20、(1)8;(2)4.【解题分析】

将x2+y2变形为(x+y)2-2xy,再将x+y与xy的值代入即可;将整理为,再将x2+y2与xy的值代入即可.【题目详解】(1)∵x=+1,y=-1,∴x+y=2,xy=2,∴x2+y2=(x+y)2-2xy=(2)2-2×2=12-4=8.(2)∵x=+1,y=-1,∴x2+y2=8,xy=2,∴+===4.【题目点拨】本题考查了分式的化简求值,以及二次根式的化简求值,熟练掌握运算法则是解题的关键.21、探究:见解析;应用:.【解题分析】

探究:由△DAE∽△BAC,推出,可得,由此即可解决问题;应用:当点D在AC的下方时,先判定△ABO∽△ADC,得出,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;当点D在AC的上方时,作B关于y轴的对称点B',则同理可得OD最小值为.【题目详解】解:探究:如图②中,∵∠BAC=∠DAE,∠ABC=∠ADE,∴△DAE∽△BAC,∠DAB=∠EAC,∴,∴,∴△ABD∽△ACE;应用:①当点D在AC的下方时,如图③−1中,作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,∴,即,又∵∠BAD=∠OAC,∴△ACO∽△ADB,∴∠ABD=∠AOC=90°,∵当OD⊥BE时,OD最小,过O作OF⊥BD于F,则△BOF为直角三角形,∵A点的坐标是(0,6),AB=BO,∠ABO=120°,∴易得OB=2,∵∠ABO=120°,∠ABD=90°,∴∠OBF=30°,∴OF=OB=,即OD最小值为;当点D在AC的上方时,如图③−2中,作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',∴∠AB'D=∠AOC=90°,∴当OD⊥B'E时,OD最小,过O作OF'⊥B'D于F',则△B'OF'为直角三角形,∵A点的坐标是(0,6),AB'=B'O,∠AB'O=120°,∴易得OB'=2,∵∠AB'O=120°,∠AB'D=90°,∴∠OB'F'=30°,∴OF'=OB'=,即OD最小值为.故答案为:.【题目点拨】本题属于相似形综合题,考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.22、(1)见解析;(2)见解析;(3)(-1,0).【解题分析】

(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1即可;

(2)根据点A和A2的坐标特征确定平移的方向和距离,利用次平移规律写出点B2、C2的坐标,然后描点即可;、

(3)连接A1A2、C1C2、B1B2,它们都经过点(-1,0),从而得到旋转中心点P.【题目详解】解:(1)如图,△A1B1C1为所作;

(2)如图,△A2B2C2为所作.

(3)△A1B1C1绕点P旋转可得到△A2B2C2,则点P点坐标为(-1,0).故答案为:(1)见解析;(2)见解析;(3)(-1,0).【题目点拨】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.23、(1);(2).【解题分析】

(1)由题意,得;可再求m的取值范围;(2)比如取m=1.【题目详解】解:(1)由题意,得.解得.(2)答案不唯一.如:取m=1,此时方程为.解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论