内蒙古通辽市开鲁县2024届数学八年级第二学期期末检测模拟试题含解析_第1页
内蒙古通辽市开鲁县2024届数学八年级第二学期期末检测模拟试题含解析_第2页
内蒙古通辽市开鲁县2024届数学八年级第二学期期末检测模拟试题含解析_第3页
内蒙古通辽市开鲁县2024届数学八年级第二学期期末检测模拟试题含解析_第4页
内蒙古通辽市开鲁县2024届数学八年级第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古通辽市开鲁县2024届数学八年级第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一次数学测验中,某学习小组六名同学的成绩(单位:分)分别是110,90,105,91,85,1.则该小组的平均成绩是()A.94分 B.1分 C.96分 D.98分2.对某班学生在家里做家务的时间进行调查后,将所得的数据分成4组,第一组的频率是0.16,第二、三组的频率之和为0.74,则第四组的频率是()A.0.38 B.0.30 C.0.20 D.0.103.已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为S2甲,S2乙,则S2甲与S2乙大小关系为()A.S2甲>S2乙 B.S2甲=S2乙 C.S2甲<S2乙 D.不能确定4.下列说法错误的是()A.“买一张彩票中大奖”是随机事件B.不可能事件和必然事件都是确定事件C.“穿十条马路连遇十次红灯”是不可能事件D.“太阳东升西落”是必然事件5.以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量6.已知直线y=-x+6交x轴于点A,交y轴于点B,点P在线段OA上,将△PAB沿BP翻折,点A的对应点A′恰好落在y轴上,则的值为()A. B.1 C. D.7.下列变形中,正确的是()A. B.C. D.8.化简9的结果是()A.9 B.-3 C.±3 D.39.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限 B.第二象限 C.第三象限 D.第四象限10.在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作垂直于x轴的直线l1和l2,探究直线l1、l2与函数y=3x的图像(双曲线)之间的关系,下列结论错误的是A.两条直线中总有一条与双曲线相交B.当m=1时,两条直线与双曲线的交点到原点的距离相等C.当m<0时,两条直线与双曲线的交点都在y轴左侧D.当m>0时,两条直线与双曲线的交点都在y轴右侧二、填空题(每小题3分,共24分)11.如图,点关于原点中心对称,且点在反比例函数的图象上,轴,连接,则的面积为______.12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为1,5,1,1.则最大的正方形E的面积是___.13.若式子有意义,则x的取值范围是_____.14.今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?15.若关于x的一元二次方程(k﹣1)x2+3x﹣1=0有实数根,则k的取值范围是_____.16.如图,正比例函数和一次函数的图像相交于点A(2,1).当x>2时,_____________________.(填“>”或“<”)17.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为________________.18.化简:的结果是________.三、解答题(共66分)19.(10分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?20.(6分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.21.(6分)某校在一次广播操比赛中,初二(1)班、初二(2)班、初二(3)班的各项得分如下:服装统一动作整齐动作准确初二(1)班初二(2)班初二(3)班(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班.(2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?22.(8分)如图,在中,AB=2AD,DE平分∠ADC,交AB于点E,交CB的延长线于点F,EG∥AD交DC于点G.⑴求证:四边形AEGD为菱形;⑵若,AD=2,求DF的长.23.(8分)如图,AD∥BC,AC⊥AB,AB=3,AC=CD=1.(1)求BC的长;(1)求BD的长.24.(8分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.(1)求线段DE的长;(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.25.(10分)如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,(1)求证:四边形DBCF是平行四边形(2)若∠A=30°,BC=4,CF=6,求CD的长26.(10分)如图,在平行四边形ABCD中,BE平分∠ABC交CD的延长线于点E,作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=8,DE=4,求平行四边形ABCD的周长.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数,即可得解.【题目详解】根据题意,该小组的平均成绩是故答案为C.【题目点拨】此题主要考查平均数的应用,熟练掌握,即可解题.2、D【解题分析】

根据各组频率之和为1即可求出答案.【题目详解】解:第四组的频率为:,故选:.【题目点拨】本题考查频率的性质,解题的关键是熟练运用频率的性质,本题属于基础题型.3、A【解题分析】

通过折线统计图中得出甲、乙两个组的各个数据,进而求出甲、乙的平均数,甲、乙的方差,进而做比较得出答案.【题目详解】甲的平均数:(3+6+2+6+4+3)÷6=4,乙的平均数:(4+3+5+3+4+5)÷6=4,=[(3﹣4)2+(6﹣4)2+(2﹣4)2+(6﹣4)2+(4﹣4)2+(3﹣4)2]≈2.33,=[(4﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2]≈1.33,∵2.33>1.33∴>,故选:A.【题目点拨】本题主要考查方差的意义,掌握方差的计算公式,是解题的关键.4、C【解题分析】

根据随机事件和确定事件以及不可能事件和必然事件的概念即可解答.【题目详解】A、“买一张彩票中大奖”是随机事件,正确,不合题意;B、不可能事件和必然事件都是确定事件,正确,不合题意;C、“穿十条马路连遇十次红灯”是不可能事件,错误,符合题意;D、太阳东升西落”是必然事件,正确,不合题意.故选:C.【题目点拨】本题考查了随机事件,确定事件,不可能事件,必然事件的概念,正确理解概念是解题的关键.5、B【解题分析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【题目详解】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选:B.【题目点拨】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、C【解题分析】

设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OP2+OA′2,即可求解.【题目详解】解:如图,y=-x+6,令x=0,则y=6,令y=0,则x=6,故点A、B的坐标分别为(6,0)、(0,6),则AB==A′B,设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OA′2+OP2,即(a)2=(-6)2+(6-a)2,解得:a=12-,则PA=12-,OP=−6,则.故选:C.【题目点拨】本题考查的是一次函数图象上点的坐标特征,关键在于在画图的基础上,利用勾股定理:PA′2=OA′2+OP2,从而求出PA、OP线段的长度,进而求解.7、D【解题分析】

根据分式的基本性质:分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.逐一进行判断。【题目详解】解:A.是最简分式,不能约分,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确。故选:D【题目点拨】本题主要考查了分式的性质,熟练掌握运算法则是解本题的关键.8、D【解题分析】

根据算术平方根的性质,可得答案.【题目详解】解:9=3,故D故选:D.【题目点拨】本题考查了算术平方根的计算,熟练掌握算术平方根的性质是解题关键.9、C【解题分析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C10、C【解题分析】

反比例函数y=3x的图象位于第一、三象限,过点A(m,0),B(m+2,0)垂直于x轴的直线l1和l2根据m【题目详解】解:反比例函数y=3x的图象位于第一、三象限,过点A(m,0),B(m+2,0)垂直于x轴的直线l1和l2

无论m为何值,直线l1和l2至少由一条与双曲线相交,因此A正确;

当m=1时,直线l1和l2与双曲线的交点为(1,3)(3,1)它们到原点的距离为10,因此B是正确的;

当m<0时,但m+2的值不能确定,因此两条直线与双曲线的交点不一定都在y轴的左侧,因此C选项是不正确的;

当m>0时,m+2>0,两条直线与双曲线的交点都在y轴右侧,是正确的,

故选:C【题目点拨】本题考查一次函数和反比例函数的图象和性质,根据m的不同取值,讨论得出不同结果.二、填空题(每小题3分,共24分)11、1【解题分析】

根据反比例函数的比例系数k的几何意义得到S△BOC=|k|=1,然后根据等底同高的三角形相等,得到S△AOC=S△BOC=1,即可求得△ABC的面积为1.【题目详解】解:∵BC⊥x轴,

∴S△BOC=|k|=1,

∵点A,B关于原点中心对称,

∴OA=OB,

∴S△AOC=S△BOC=1,

∴S△ABC=S△AOC+S△BOC=1,

故答案为:1.【题目点拨】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12、2【解题分析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S1,S1+S1=S3,∵正方形A、B、C、D的面积分别为1,5,1,1,∵最大的正方形E的面积S3=S1+S1=1+5+1+1=2.13、x≥﹣2且x≠1.【解题分析】由知,∴,又∵在分母上,∴.故答案为且.14、8【解题分析】

根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可.【题目详解】解:设:在甲机换了x次.乙机换了y次.丙机换了z次.在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;∴由②-①,得:2y+8z=68,∴y+4z=34,∴y=34-4z,结合x+y+z=12,能满足上面两式的值为:∴;即在丙机换了8次.故答案为:8.【题目点拨】此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可.15、且【解题分析】试题解析:由题意知,∵方程有实数根,∴且故答案为且16、>【解题分析】

根据图像即可判断.【题目详解】解:∵点A(2,1)∴x>2在A点右侧,由图像可知:此时>.故答案为>【题目点拨】此题考查的是比较一次函数的函数值,结合图像比较一次函数的函数值是解决此题的关键.17、1,1.【解题分析】

本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【题目详解】数据1出现了3次最多,这组数据的众数是1,共10个数据,从小到大排列此数据处在第5、6位的数都为1,故中位数是1.故答案为:1,1.【题目点拨】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.18、-2【解题分析】

化简二次根式并去括号即可.【题目详解】解:故答案为:-2【题目点拨】本题考查了二次根式的混合运算,计算较为简单,熟练掌握二次根式的化简是解题的关键.三、解答题(共66分)19、(1)8元;(2)1元.【解题分析】

(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【题目详解】解:(1)设第一批手机壳进货单价为x元,

根据题意得:3•=,

解得:x=8,

经检验,x=8是分式方程的解.

答:第一批手机壳的进货单价是8元;

(2)设销售单价为m元,

根据题意得:200(m-8)+600(m-10)≥2000,

解得:m≥1.

答:销售单价至少为1元.【题目点拨】本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.20、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)【解题分析】

(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.【题目详解】(1)如图1,在矩形ABCO中,∠B=90°当点D落在边BC上时,BD2=AD2﹣AB2,∵C(0,3),A(a,0)∴AB=OC=3,AD=AO=a,∴BD=;(2)如图2,连结AC,∵a=3,∴OA=OC=3,∴矩形ABCO是正方形,∴∠BCA=45°,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45°+x,①当CG=EG时,x=45°+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180°,∴x+x+(45°+x)=180°,解得x=45°,∴∠AEC=∠ACE=90°,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45°+x,∵∠ECG+∠EGC+∠CEG=180°,∴x+(45°+x)+(45°+x)=180°,解得x=30°,∴∠AEC=∠ACE=75°,∠CAE=30°如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=AE=AC,BQ=AC,∴EH=BQ,EH∥BQ且∠EHQ=90°∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)①∵点P为矩形ABCO的对称中心,∴,∵B(a,3),∴PB的中点坐标为:,∴直线PB的解析式为,∵当P,B关于AD对称,∴AD⊥PB,∴直线AD的解析式为:,∵直线AD过点,∴,解得:a=±3,∵a≥3,∴a=3;②存在M,N;理由:∵a=3,∴直线AD的解析式为y=﹣x+9,∴∴∠DAO=60°,∴∠DAB=30°,连接AE,∵AD=OA=3,DE=OC=3,∴∠EAD=30°,∴A,B,E三点共线,∴AE=2DE=6,∴,设M(m,0),N(0,n),∵四边形EFMN是平行四边形,∴,解得:,∴M(,0),N(0,).【题目点拨】本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.21、(1)89分,78分,初二(1);(2)排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析【解题分析】

(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;

(2)利用加权平均数分别计算三个班的得分后即可排序;

(3)根据成绩提出提高成绩的合理意见即可;【题目详解】(1)服装统一方面的平均分为:=89分;

动作整齐方面的众数为78分;

动作准确方面最有优势的是初二(1)班;

(2)∵初二(1)班的平均分为:=84.7分;

初二(2)班的平均分为:=82.8分;

初二(3)班的平均分为:=83.9;

∴排名最好的是初二一班,最差的是初二(2)班;

(3)加强动作整齐方面的训练,才是提高成绩的基础.【题目点拨】考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.22、(1)证明见解析;(2)4.【解题分析】

(1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;

(2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,AH=AG=1,由直角三角形的性质得出DH=AH=,得出DE=2DH=2,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.【题目详解】(1)证明:∵四边形ABCD是平行四边形,

∴AB∥DC,

∴∠AED=∠GDE,

∵AE∥DG,EG∥AD,

∴四边形AEGD是平行四边形,

∵DE平分∠ADC,

∴∠ADE=∠GDE,

∴∠ADE=∠AED,

∴AD=AE,

∴四边形AEGD为菱形;

(2)解:连接AG交DF于H,如图所示:

∵四边形AEGD为菱形,

∴AD=DG,AG⊥DE,

∵∠ADC=60°,AD=2,

∴△ADG是等边三角形,AG=AD=2,

∴∠ADH=30°,AH=AG=1,

∴DH=AH=,

∴DE=2DH=2,

∵AD=AE,AB=2AD,AD∥CF,EG∥AD,

∴DG=BE,∠EDG=∠FEB,∠DGE=∠C=∠EBF,

在△DGE和△EBF中,∴△DGE≌△EBF(ASA),

∴DE=EF,

∴DF=2DE=4.【题目点拨】本题考查菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.23、(1)BC=;(1)BD=2【解题分析】

(1)在Rt△ABC中利用勾股定理即可求出BC的长;

(1)过点B作BE⊥DC交DC的延长线于点E.根据等边对等角的性质以及平行线的性质得出∠1=∠3,利用角平分线的性质得出AB=BE=3,在Rt△BCE中,根据勾股定理可得EC=1,则ED=4,在Rt△BDE中,利用勾股定理可得BD=2.【题目详解】(1)在Rt△ABC中,∵AC⊥AB,AB=3,AC=1,∴BC=;(1)过点B作BE⊥DC交DC的延长线于点E.∵AC=CD,∴∠1=∠ADC,又∵AD∥BC,∴∠3=∠ADC,∠1=∠1,∴∠1=∠3,又∵AC⊥AB,BE⊥DC,∴AB=BE=3,又由(1)BC=,在Rt△BCE中,由勾股定理可得EC=1;∴ED=1+1=4,在Rt△BDE中,由勾股定理可得BD=2.【题目点拨】本题考查了勾股定理,等腰三角形、平行线、角平分线的性质,掌握各定理是解题的关键.24、(1)1;(2)(,);(3)6+﹣3或6++3或2﹣2或8.【解题分析】

(1)想办法证明DE⊥AB,利用角平分线的性质定理证明DE=OD即可解决问题;(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.(3)分三种情形:①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形.③如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.分别解直角三角形即可解决问题.【题目详解】解:(1)∵直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,∴A(0,3),B(,0),∴OA=3,OB=,∴tan∠ABO==,∴∠ABO=60°,∵BD平分∠ABO,∴∠DBO=30°,∴OD=OB•tan30°=1,DB=2OD=2,∴AD=DB=2,∴AE=EB,∴DE⊥AB,∵DO⊥OB,DB平分∠ABO,∴DE=DO=1.(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.∵E′(,),D′(2,﹣1),∴直线D′E′的解析式为,直线BC的解析式为y=x﹣3,由,解得,,∴F.把点F向上平移3个单位,向右平移个单位得到点G,∴G().(3)以点A为圆心,以AE为半径作⊙A,则DE为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论