工程材料复习资料_第1页
工程材料复习资料_第2页
工程材料复习资料_第3页
工程材料复习资料_第4页
工程材料复习资料_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

材料的性能及应用意义变形:材料在外力作用下产生形状与尺寸的变化。强度:材料在外力作用下对变形与断裂的抵抗能力。(对塑性变形的抗力)比例极限(σp)弹性极限(σe)屈服点或屈服强度(σs、σ0.2)抗拉强度(σb)比强度:各种强度指标与材料密度之比。屈强比:材料屈服强度与抗拉强度之比。塑性:指材料在外力作用下产生塑性变形而不破坏的能力,即材料断裂前的塑性变形的能力。硬度:反映材料软硬程度的一种性能指标,表示材料表面局部区域内抵抗变形或破裂的能力。韧性:材料强度和塑性的综合表现。布氏硬度HBW洛氏硬度HR(优点:操作迅速简便,压痕较小,几乎不损伤工件表面,故而应用最广。)维氏硬度HV疲劳断裂特点:①断裂时的应力远低于材料静载下的抗拉强度甚至屈服强度;②断裂前无论是韧性材料还是塑性材料均无明显的塑性变形。疲劳过程的三个基本组成阶段:疲劳萌生、疲劳扩展、最后断裂材料的结构键:在固体状态下,原子聚集堆积在一起,其间距足够近,它们之间便产生了相互作用力,即为原子间的结合力或结合键。根据结合力的强弱,可把结合键分为两大类:强键(包括离子键、共价键、金属键)和弱键(即分子键)。共价键晶体和离子键晶体结合最强,金属键晶体次之,分子键晶体最弱。晶体:原子在三维空间中有规则的周期性重复排列的物质。各向异性:晶体具有固定熔点且在不同方向上具有不同的性能。晶格:晶体中原子(或离子、分子)在空间呈规则排列,规则排列的方式就称为晶体结构。结点:将构成晶体的实际质点抽象成纯粹的几何点。体心立方晶格:晶胞原子数2面心立方晶格:晶胞原子数4密排六方晶格:晶胞原子数6晶体缺陷:原子的排列不可能像理想晶体那样规则完整,而是不可避免地或多或少地存在一些原子偏离规则排列的区域,这就是晶体缺陷。晶体缺陷按几何特征可分为点缺陷、线缺陷(位错)和面缺陷(如晶界、亚晶界)三类。点缺陷:空位、间隙原子、置换原子线缺陷特征:两个方向的尺寸很小,在另一个方向的尺寸相对很大。位错:晶体中有一列或若干列原子发生了有规律的错排现象。实际金属晶体中存在的位错等晶体缺陷,晶体的强度值降低了2-3个数量级。面缺陷:晶界、亚晶界材料的凝固与结晶组织凝固:物质从液态转化为固态的过程。结晶:物质从液态转化为固态后,固态物质是晶体,这种凝固的过程就是结晶。过冷:金属的实际结晶温度低于理论结晶温度的现象。二者之差称为过冷度(△T),△T=Tm-Tn。过冷度越大,实际结晶温度越低。同一种金属,其纯度越高,则过冷度越大;冷却速度越快,则实际结晶温度越低,过冷度越大。结晶过程:金属的结晶过程是形核与长大的过程。形核方式:均质形核(自发形核)、异质形核(非自发形核)细晶强化:用细化晶粒来提高材料强度的方法。(晶粒越细,晶界越多,也越曲折,强化作用越显著。)晶粒大小对金属性能的影响:细晶粒金属晶界多,晶界处晶格扭曲畸变,提高了塑性变形的抗力,使其强度、硬度提高。细晶粒金属晶粒数目多,变形可均匀分布在许多晶粒上,使其塑性好。因此,在常温下晶粒越小,金属的强度、硬度越高,塑性、韧性越好。细化铸锭和焊缝区的晶粒方法:①控制过冷度(增加过冷度可提高N/G值,有利于细化晶粒)②变质处理③振动处理同素异构:某些金属元素和非金属元素在不同温度和压力下,具有不同类型的晶体结构。合金:合金是由两种或两种以上的金属元素、或金属与非金属元素组成的具有金属特性的物质。组元:组成合金的最基本的独立物质称为组元,组元可以是元素或稳定化合物。工业上广泛使用的碳钢和铸铁,就是由铁和碳两种组元组成的二元合金。固溶体:溶质原子溶入金属溶剂中所组成的合金相称为固溶体。(间隙固溶体、置换固溶体)固溶强化:由于外来原子(溶质原子)溶入基体中形成固溶体而使其强度、硬度升高的现象,此是金属强化的重要形式。金属化合物:①正常价化合物②电子化合物③间隙相和间隙化合物二元合金相图:①匀晶相图②共晶相图典型三晶区组织:①表层细晶区②柱状晶区③中心等轴晶区等轴晶:由于中心部位的温度大致均匀,每个晶粒的成长在各方向上也是接近一致的,故形成了等轴晶。冶金缺陷:①缩孔②疏松③气泡④裂纹⑤偏析材料的变形断裂与强化机制单晶体塑性变形的主要方式:滑移和孪生(常温与低温下)冷塑性变形对金属组织结构的影响:①显微组织的变化②亚结构的细化③变形织构④残留应力变形织构:一是拉拔时形成的织构,称为丝织构,其主要特征是各个晶粒的某一晶向大致与拉拔方向平行;二是轧制时形成的织构,称为板织构,其主要特征是各个晶粒的某一晶面与轧制平面平行,而某一晶相与轧制时的主变形方向平行。加工硬化(冷塑性变形对金属力学性能的影响):在冷塑性变形过程中,随着金属内部组织变化,其力学性能也将发生明显变化。随着变形程度的增加,金属的强度、硬度显著升高,而塑性、韧性显著下降的现象。产生加工硬化的原因与位错密度增大有关。加工硬化现象实际意义:①它是一种非常重要的强化手段,可用来提高金属强度,特别是对那些无法热处理强化的合金尤其重要。②加工硬化是某些工件或半成品能够拉伸或冷冲压加工成形的重要基础,有利于金属均匀变形。③加工硬化课提高金属零件在使用过程中的安全性。冷塑性变形后的金属加热时,随加热温度升高,会发生回复、再结晶和晶粒长大等过程。回复:指经冷塑性变形的金属材料加热时,在显微组织发生明显改变前(即再结晶晶粒形成脱碳:钢在加热和保温时,炉气中含有O2、CO2、H2O、H2等脱碳性气氛,钢表层中固溶的碳和这些介质在高温作用下发生氧化反应,使表层碳浓度降低,即产生脱碳。过热:加热温度过高或保温时间过长,得到粗大晶粒组织,称作过热。过烧:由于加热温度过高,使奥氏体晶界严重氧化,甚至发生了局部熔化,这种现象称为过烧。珠光体转变——高温转变(A1—550℃)在固态下形核和长大的结晶过程层片珠光体的性能主要取决于层片间距。珠光体(P)索氏体(S)托氏体(T)贝氏体转变——中温转变(550℃—Ms)半扩散转变上贝氏体呈羽毛状下贝氏体呈黑色针片状马氏体转变——低温转变(Ms—Mf)无扩散转变Wc<0.30%板条马氏体Wc>1.0%片状马氏体Wc=0.30%—1.0%板条马氏体和片状马氏体的混合组织马氏体的性能取决于马氏体的碳含量与组织形态,随马氏体中碳含量的升高,塑性与韧性急剧下降。马氏体转变的特点:①无扩散性②转变速度极快③转变的不完全性马氏体点的位置主要取决于奥氏体的成分。残留奥氏体:当奥氏体中的Wc大于0.5%时,Mf已低于室温,这时,奥氏体即使冷到室温也不能完全转变为马氏体,这部分被残留下来的奥氏体称为残留奥氏体。冷处理:生产中可将淬火工件冷至室温后,再随即放到0℃以下温度的介质中冷却,以最大限度地消除残留奥氏体,达到提高硬度、耐磨性与尺寸稳定性的目的。过冷奥氏体的连续转变:V1炉冷珠光体V2空冷索氏体V3油冷托氏体V4水冷马氏体退火:将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却,以获得接近平衡态组织的热处理工艺。(高碳)完全退火:将钢完全奥氏体化后,随之缓慢冷却,获得接近平衡状态组织的退火工艺。适用于亚共析钢成分的中碳钢及中碳合金钢的铸件、锻件、轧制件及焊接件。完全退火目的:细化组织,降低硬度,改善可加工性,去除内应力。等温退火:目的和加热过程与完全退火相同。适用于高碳钢、中碳合金钢、经渗碳处理后的低碳合金钢和某些高合金钢的大型铸、锻件及冲压件。球化退火:将工件加热到Ac1±(10—20)℃,保温后等温冷却或缓慢冷却,使钢中未溶碳化物球状化而进行的热处理工艺。球化退火目的:降低硬度,提高塑性,改善可加工性,以及获得均匀的组织,改善热处理工艺性能,为以后的淬火做准备。球化退火主要适用于共析和过共析成分的碳钢和合金钢锻、轧件。均匀化退火:又称扩散退火,是为了减轻金属铸锭、铸件或铸坯的化学成分偏析和组织不均匀性,将其加热到高温,长时间保持,然后进行缓慢冷却,以达到化学成分和组织均匀化的退火工艺。去应力退火:去应力退火是为了去除由于塑型加工、焊接、热处理及机械加工等造成的及铸件内存在的残留应力而进行的退火。正火:将钢加热到A3(对于亚共析钢)或Acm(对于过共析钢)以上30—50℃,保温适当时间后,在静止的空气中冷却的热处理工艺。(低碳)正火的主要目的是调整锻件和铸钢件的硬度,细化晶粒,消除网状渗碳体并为淬火做好组织准备。正火主要应用于:①改善低碳钢的切削加工性能②中碳结构钢件的预备热处理③普通结构零件的最终热处理④消除过共析钢的网状碳化物⑤用于某些碳钢、低合金钢的淬火返修件淬火:将钢件加热到Ac3或Ac1以上某一温度,保持一定时间后以适当速度冷却,获得马氏体或下贝氏体组织的热处理工艺。淬火后可以得到细小而均匀的马氏体。常用淬火介质:水尺寸较小的碳钢零件油合金钢淬火方法:①单介质淬火②双介质淬火③分级淬火④等温淬火分级淬火:将工件奥氏体化后,随之浸入温度稍高或稍低于Ms点的液态介质中,保温适当时间,使钢件内外层都达到介质温度后取出空冷,获得马氏体组织的淬火工艺。等温淬火:将工件奥氏体化后,随之快冷到贝氏体转变温度区(260—400℃)等温足够长时间,使奥氏体转变为下贝氏体的淬火工艺。淬透性:钢在淬火后的淬硬层深度,它表征了钢在淬火时获得马氏体的能力。淬透性的影响因素(冷却速度必须大于临界速度Vk):①合金元素②碳的质量分数③奥氏体化温度④钢中未溶第二相淬硬性:指钢在理想条件下进行淬火硬化(即得到马氏体组织)所能达到的最高硬度的能力。淬硬性主要取决于马氏体中的碳含量,碳含量越高,淬火后硬度越高,合金元素的含量则对它无显著影响。回火:将淬硬后的钢重新加热到Ac1以下的某一温度,保温一定时间后冷却到室温的热处理工艺。回火的主要目的:①降低脆性、消除或降低残留应力②赋予工件所要求的力学性能③稳定工件尺寸低温回火(150—250℃)回火马氏体中温回火(350—500℃)回火托氏体高温回火(500—650℃)回火索氏体低温下长时间保温的热处理称为稳定化处理。回火脆性:①第一类回火脆性②第二类回火脆性(减少钢中杂质元素的含量,加入Mo等能抑制晶界偏聚的元素,中小型工件可通过回火后快速冷却来抑制)淬火冷却变形的原因:变形与开裂的根本原因是淬火时所形成的内应力所致。淬火冷却变形是淬火冷却过程中热应力与相变应力在零件形状、尺寸的反映。淬火后工件表面局部未被淬硬的区域称为软点。表面淬火:表面淬火是通过快速加热与立即淬火冷却相结合的方法来实现的,即利用快速加热使工件表面很快地加热到淬火温度,在不等热量充分传到心部时,即迅速冷却,使表层得到马氏体而被淬硬,而心部仍保持为未淬火状态的组织,即原来的塑性、韧性较好的退火、正火或调质状态的组织。(目的:提高硬度)化学热处理基本过程:加热、分解、吸收、扩散常用的化学热处理:渗碳、渗氮、碳氮共渗、氮碳共渗与表面淬火相比,化学热处理的主要特点是:表层不仅有组织变化,而且有成分的变化故性能改变的幅度大。渗碳工件工艺路线:锻造→正火→机械加工→渗碳→淬火+低温回火→精加工。渗碳工件经淬火+低温回火后的表面组织为针状回火马氏体+碳化物+少量残留奥氏体渗氮:指在一定温度下使活性氮原子渗入工件表面的化学热处理工艺,也称氮化。目前应用较多的有气体渗氮和离子渗氮。渗氮零件工艺路线:锻造→正火→粗加工→调质→精加工→去应力→粗磨→渗氮→精磨或研磨。与渗碳相比,气体渗氮的特点:①变形很小②高硬度、高耐磨性③疲劳极限高④高的耐蚀性能⑤生产周期长,成本高。钢的碳氮共渗:向钢的表面同时渗入碳和氮原子的过程,也称氰化处理。钢铁材料合金元素存在的形式主要有三种:固溶态、化合态和游离态。合金元素溶入奥氏体中从而提高钢的淬透性、溶入马氏体中从而提高耐回火性等间接作用对钢的性能影响程度,往往大于其固溶强化这种直接作用。、游离态元素对钢的性能产生不利影响,故应尽量避免此种存在形式。合金元素对钢加热时奥氏体化的影响:绝大多数合金元素(尤其是碳化物形成元素)对非奥氏体组织转变为奥氏体形核与长大、残余碳化物的溶解、奥氏体成分均匀化都有不同程度阻碍与延缓作用。因此大多数合金钢热处理时一般应有较高的加热温度和较长的保温时间,但对一些需要较多未溶碳化物的高碳合金工具钢,则不应该采用过高加热温度和过长的保温时间。合金元素对淬火钢回火过程的影响:①提高钢的耐回火性②产生二次硬化③影响了高温回火脆性耐回火性:指淬火钢对回火时所发生的组织转变和硬度下降的抗力,绝大多数合金元素均有此作用。二次硬化:当钢中含有较多量中强或强碳化物形成元素Cr、W、Mo、V等,并在450—600℃温度范围内回火时,因组织析出了细小弥散分布的特殊合金碳化物(如W2C、Mo2C、VC等),这些碳化物硬度极高、热稳定性高且不易长大,此时,钢的硬度与强度不但不降低,反而会明显升高(甚至比淬火钢硬度还高),这就是“二次硬化”现象。不锈钢性能要求:①优良的耐蚀性②合适的力学性能③良好的工艺性能不锈钢具有高耐蚀性的根本原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论