湖南省长沙市铁路第一中学2024届八年级数学第二学期期末调研试题含解析_第1页
湖南省长沙市铁路第一中学2024届八年级数学第二学期期末调研试题含解析_第2页
湖南省长沙市铁路第一中学2024届八年级数学第二学期期末调研试题含解析_第3页
湖南省长沙市铁路第一中学2024届八年级数学第二学期期末调研试题含解析_第4页
湖南省长沙市铁路第一中学2024届八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市铁路第一中学2024届八年级数学第二学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是()A.100° B.120° C.130° D.150°2.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.3.已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为()A. B.6 C.13 D.4.若二次根式有意义,则x的取值范围是()A. B. C. D.5.如图,平行四边形ABCD中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接BD,将△BCD绕点B旋转,当BD(即BD′)与AD交于一点E,BC(即BC′)同时与CD交于一点F时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF的周长的最小值是4+2A.①② B.②③ C.①②④ D.①②③④6.如图,在中,点、分别是、的中点,平分,交于点,若,则的长是()A. B. C. D.7.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A. B.C. D.8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B.①②③ C.①②④ D.①②③④9.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()A.∠ABC=90° B.AC=BD C.∠OBC=∠OCB D.AO⊥BD10.以三角形三边中点和三角形三个顶点能画出平行四边形有()个.A.1 B.2 C.3 D.411.如图,平行四边形ABCD中,对角线AC和BD相交于点O,若AC=12,BD=10,AB=7,则△DOC的周长为()A.29 B.24 C.23 D.1812.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ二、填空题(每题4分,共24分)13.计算:3﹣的结果是_____.14.命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是___________________.它是________命题(填“真”或“假”).15.如图,已知一块直角三角板的直角顶点与原点重合,另两个顶点,的坐标分别为,,现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为__________.16.若个数,,,的中位数为,则_______.17.甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.18.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=___°.三、解答题(共78分)19.(8分)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?20.(8分)如图,在△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,AB=70cm,求△ABM的面积.21.(8分)(1)研究规律:先观察几个具体的式子:(2)寻找规律:(且为正整数)(3)请完成计算:22.(10分)在平面直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.求a的值.23.(10分)如图1,矩形ABCD中,AB=2,BC=3,过对角线AC中点O的直线分别交边BC、AD于点E、F(1)求证:四边形AECF是平行四边形;(2)如图2,当EF⊥AC时,求EF的长度.24.(10分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)

(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.

①求证:PG=PF;

②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.

(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.

25.(12分)在中,,点为所在平面内一点,过点分别作交于点,交于点,交于点.若点在上(如图①),此时,可得结论:.请应用上述信息解决下列问题:当点分别在内(如图②),外(如图③)时,上述结论是否成立?若成立,请给予证明;若不成立,,,,与之间又有怎样的数量关系,请写出你的猜想,不需要证明.26.已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据三角形中位线定理得到PE=AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.【题目详解】解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,

∴PE=AD,PF=BC,

∵AD=BC,

∴PE=PF,

∴∠PFE=∠PEF=25°,

∴∠EPF=130°,

故选:C.【题目点拨】本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.2、B【解题分析】

由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.【题目详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,∵小长方形与原长方形相似,故选B.【题目点拨】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.3、D【解题分析】已知直角三角形的两直角边长分别为5和12,根据勾股定理求得斜边为13,根据直角三角形斜边上的中线等于斜边的一半,得此直角三角形斜边上的中线长为,故选D.4、D【解题分析】试题分析:根据二次根式的意义,可知其被开方数为非负数,因此可得x-2≥0,即x≥2.故选D5、C【解题分析】

根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【题目详解】∵AB=BC=CD=AD=4,∠A=∠C=60°,∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°.∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°.故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°.故②正确;∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时.∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小.∵AB=4,∠A=60°,BE⊥AD,∴EB=2,∴△DEF的周长最小值为4+2.故④正确.故选C.【题目点拨】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.6、B【解题分析】

先证明DE是中位线,由此得到DE∥AB,再根据角平分线的性质得到DF=BD,由此求出答案.【题目详解】∵点、分别是、的中点,∴DE是△ABC的中位线,BD=BC=3,∴DE∥AB,∴∠ABF=∠DFB,∵平分,∴∠ABF=∠CBF,∴∠DFB=∠CBF,∴BD=FD,∴DF=3,故选:B.【题目点拨】此题考查三角形的中位线定理,等腰三角形的性质,角平分线的性质,熟记定理并运用解题是关键.7、C【解题分析】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100)=60+0.8x﹣80=0.8x﹣20,所以,y与x的函数关系为,纵观各选项,只有C选项图形符合.故选C.点睛:本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.8、B【解题分析】

可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B.9、D【解题分析】

依据矩形的定义和性质解答即可.【题目详解】∵ABCD为矩形,∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;∴OB=OC,∴∠OBC=∠OCB,故C正确,与要求不符.当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.故选:D.【题目点拨】本题主要考查的是矩形的性质,熟练掌握矩形的性质是解题的关键.10、C【解题分析】试题分析:如图所示,∵点E、F、G分别是△ABC的边AB、边BC、边CA的中点,∴AE=BE=GF=AB,AG=CG=EF=AC,BF=CF=EG=BC,GF∥AB,EG∥BC,EF∥AC,∴四边形AEFG、BEGF、CFEG都是平行四边形.故选C.考点:平行四边形的判定;三角形中位线定理.11、D【解题分析】

根据平行四边形的对角线互相平分可求出DO与CO的长,然后求出△DOC的周长即可得出答案.【题目详解】在平行四边形ABCD中,∵CD=AB=7,,,∴△DOC的周长为:DO+CO+CD=5+6+7=18.故选D.【题目点拨】本题考查了平行四边形的性质.熟练掌握平行四边形的性质是解题的关键.12、D【解题分析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【题目详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【题目点拨】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.二、填空题(每题4分,共24分)13、2.【解题分析】

直接利用二次根式的加减运算法则计算得出答案.【题目详解】解:-=.故答案为:.【题目点拨】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.14、如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形真【解题分析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15、【解题分析】

根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.【题目详解】∵A(-1,0),∴OA=1,

∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB′,∴平移的距离为1个单位长度,∵点B的坐标为∴点B的对应点B′的坐标是,故答案为:.【题目点拨】此题主要考查根据平移的性质求点坐标,熟练掌握,即可解题.16、【解题分析】

根据中位数的概念求解.【题目详解】解:∵5,x,8,10的中位数为7,∴,解得:x=1.故答案为:1.【题目点拨】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17、乙【解题分析】

根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.【题目详解】解:∵0.5>0.4∴S甲2>S乙2,则成绩较稳定的同学是乙.故答案为:乙.【题目点拨】此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.18、17.1.【解题分析】

根据矩形的性质由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ECD即可.【题目详解】解:∵四边形ABCD是矩形,∴∠ADC=90°,∵∠ADF=21°,∴∠CDF=∠ADC﹣∠ADF=90°﹣21°=61°,∵DF=DC,∴∠ECD=,故答案为:17.1.【题目点拨】本题考查了矩形的性质,等腰三角形的性质,解本题的关键是求出∠CDF.是一道中考常考的简单题.三、解答题(共78分)19、(1)5元(2)0.5元/千克;y=x+5(0≤x≤30);(3)他一共带了45千克土豆.【解题分析】

(1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.【题目详解】(1)根据图示可得:农民自带的零钱是5元.(2)(20-5)÷30=0.5(元/千克)∴y=x+5(0≤x≤30)答:降价前他出售的土豆每千克是0.5元.(3)(26-20)÷0.4+30=15+30=45(千克)答:他一共带了45千克土豆.考点:一次函数的应用.20、△ABM的面积是700cm2.【解题分析】

过M作ME⊥AB于E,根据角平分线上的点到角的两边的距离相等可得CM=ME,即可解答【题目详解】过M作ME⊥AB于E,∵∠C=90°,AM平分∠CAB,CM=20cm,∴CM=ME=20cm,∴△ABM的面积是×AB×ME=×70cm×20cm=700cm2.【题目点拨】此题考查角平分线的性质和三角形面积,解题关键在于利用角平分线的性质求出CM=ME21、(1);;;(2);(3).【解题分析】

(1)各式计算得到结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式各项利用得出的规律变形,计算即可求出值.【题目详解】解:(1);;;(2);(3)原式=.【题目点拨】此题考查了二次根式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.22、7【解题分析】

运用待定系数法求出直线的解析式,然后把x=-2代入解析式求出a的值。【题目详解】解:(1)设直线的解析式为y=kx+b,把A(-1,5),B(3,-3)代入,

可得:解得:所以直线解析式为:y=-2x+3,

把P(-2,a)代入y=-2x+3中,

得:a=7故答案为:7【题目点拨】此题考查一次函数问题,关键是根据待定系数法解解析式.23、(1)见解析;(2)EF=.【解题分析】

(1)证明△AOF≌△COE全等,可得AF=EC,∵AF∥EC,∴四边形AECF是平行四边形;(2)由(1)知四边形AECF是平行四边形,且EF⊥AC,∴四边形AECF为菱形,假设BE=a,根据勾股定理求出a,从而得知EF的长度;【题目详解】解:(1)∵矩形ABCD,∴AF∥EC,AO=CO∴∠FAO=∠ECO∴在△AOF和△COE中,,∴△AOF≌△COE(ASA)∴AF=EC又∵AF∥EC∴四边形AECF是平行四边形;(2)由(1)知四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF为菱形,设BE=a,则AE=EC=3-a∴a2+22=(3-a)2∴a=则AE=EC=,∵AB=2,BC=3,∴AC==∴AO=OC=,∴OE===,∴EF=2OF=.【题目点拨】此题考查平行四边形的判定,菱形的性质,勾股定理,全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.24、(1)①详见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG-DF=DP【解题分析】

(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直角三角形,△HPG≌△DPF,根据直角三角形性质可得HD=DP;(2)过点P作PH⊥PD交射线DA于点H,得到△HPD为等腰直角三角形,证△HPG≌△DPF,得HG=DF,DH=DG-HG=DG-DF,DG-DF=DP.【题目详解】(1)①∵由矩形性质得∠GPF=∠HPD=90°,∠ADC=90°,

∴∠GPH=∠FPD,

∵DE平分∠ADC,

∴∠PDF=∠ADP=45°,

∴△HPD为等腰直角三角形,

∴∠DHP=∠PDF=45°,

在△HPG和△DPF中,

∵,

∴△HPG≌△DPF(ASA),

∴PG=PF;

②结论:DG+DF=DP,

由①知,△HPD为等腰直角三角形,△HPG≌△DPF,

∴HD=DP,HG=DF,

∴HD=HG+DG=DF+DG,

∴DG+DF=DP;

(2)不成立,数量关系式应为:DG-DF=DP,

如图,过点P作PH⊥PD交射线DA于点H,

∵PF⊥PG,

∴∠GPF=∠HPD=90°,

∴∠GPH=∠FPD,

∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,

∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,

∴∠DHP=∠EDC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论