2024届黑龙江省鸡西市虎林市八五八农场学校八年级数学第二学期期末达标检测试题含解析_第1页
2024届黑龙江省鸡西市虎林市八五八农场学校八年级数学第二学期期末达标检测试题含解析_第2页
2024届黑龙江省鸡西市虎林市八五八农场学校八年级数学第二学期期末达标检测试题含解析_第3页
2024届黑龙江省鸡西市虎林市八五八农场学校八年级数学第二学期期末达标检测试题含解析_第4页
2024届黑龙江省鸡西市虎林市八五八农场学校八年级数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省鸡西市虎林市八五八农场学校八年级数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在菱形ABCD中,对角线AC与BD相交于点O,若BC=3,∠ABC=60°,则BD的长为()A.2 B.3 C. D.2.五边形的内角和为()A.360° B.540° C.720° D.900°3.如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是()A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形4.下列计算正确的是()A.×= B.+= C.=4 D.﹣=5.矩形的对角线一定具有的性质是()A.互相垂直 B.互相垂直且相等C.相等 D.互相垂直平分6.若一个正多边形的一个外角是30°,则这个正多边形的边数是()A.9 B.10 C.11 D.127.如图,下面不能判定四边形ABCD是平行四边形的是()A.B.C.D.8.正六边形的外角和为()A.180° B.360° C.540° D.720°9.如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是()A.AC=BD B.AB=AC C.∠ABC=90° D.AC⊥BD10.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化米,则所列方程正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.一次函数y=-4x-5的图象不经过第_____________象限.12.如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.13.点与点关于轴对称,则点的坐标是__________.14.若-,则的取值范围是__________.15.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________16.关于t的分式方程=1的解为负数,则m的取值范围是______.17.关于x的方程a2x+x=1的解是__.18.___________三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;(1)求△DAC的面积;(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;(3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.20.(6分)如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:BD=CE.21.(6分)已知△ABC,分别以BC,AB,AC为边作等边三角形BCE,ACF,ABD(1)若存在四边形ADEF,判断它的形状,并说明理由.(2)存在四边形ADEF的条件下,请你给△ABC添个条件,使得四边形ADEF成为矩形,并说明理由.(3)当△ABC满足什么条件时四边形ADEF不存在.22.(8分)在平行四边形中,于E,于F.若,平行四边形周长为40,求平行四边形的面积.23.(8分)计算:(1);(2).24.(8分)已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC25.(10分)如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线,OC是∠AOD的平分线。(1)求∠DOC的度数;(2)求出射线OC的方向。26.(10分)解方程组:.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

只要证明△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【题目详解】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,AB=BC,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=3×,∴BD=.故选C.【题目点拨】本题主要考查解直角三角形和菱形的性质的知识点,解答本题的关键是熟记菱形的对角线垂直平分,本题难度一般.2、B【解题分析】

n边形的内角和是(n﹣2)180°,由此即可求出答案.【题目详解】解:五边形的内角和是(5﹣2)×180°=540°.故选B.【题目点拨】本题考查了多边形的内角和,熟练掌握多边形内角和公式是解题的关键.3、C【解题分析】

A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,∵△ABE、△ADF都是等边三角形,∴AD=DF,AB=EB,∠ADF=∠ABE=60°,∴DF=BC,CD=BC,∴∠CDF=360°-∠ADC-60°=300°-∠ADC,∠EBC=360°-∠ABC-60°=300°-∠ABC,∴∠CDF=∠EBC,在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,∴△CDF≌△EBC(SAS),故A正确;B.在平行四边形ABCD中,∠DAB=180°-∠ADC,∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,∴∠CDF=∠EAF,故B正确;C..当CG⊥AE时,∵△ABE是等边三角形,∴∠ABG=30°,∴∠ABC=180°-30°=150°,∵∠ABC=150°无法求出,故C错误;D.同理可证△CDF≌△EAF,∴EF=CF,∵△CDF≌△EBC,∴CE=CF,∴EC=CF=EF,∴△ECF是等边三角形,故D正确;故选C.点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.4、A【解题分析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解:A.×=,此选项正确;B.+,此选项错误;C.=2,此选项错误;D.﹣=2-,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.5、C【解题分析】

根据矩形的性质即可判断.【题目详解】因为矩形的对角线相等且互相平分,所以选项C正确,故选C.【题目点拨】本题考查矩形的性质,解题的关键是记住矩形的性质.6、D【解题分析】

首先根据题意计算正多边形的内角,再利用正多边形的内角公式计算,即可得到正多边的边数.【题目详解】根据题意正多边形的一个外角是30°它的内角为:所以根据正多边形的内角公式可得:可得故选D.【题目点拨】本题主要考查正多边形的内角公式,是基本知识点,应当熟练掌握.7、C【解题分析】

根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【题目详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.【题目点拨】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.8、B【解题分析】

由多边形的外角和等于360°,即可求得六边形的外角和.【题目详解】解:∵多边形的外角和等于360°,

∴六边形的外角和为360°.

故选:B.【题目点拨】此题考查了多边形的内角和与外角和的知识.解题时注意:多边形的外角和等于360度.9、D【解题分析】

根据菱形的判定方法有四种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,④对角线平分对角,作出选择即可.【题目详解】A.∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,不是菱形,故本选项错误;B.∵四边形ABCD是平行四边形,AB=AC≠BC,∴平行四边形ABCD不是菱形,故本选项错误;C.∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出平行四边形ABCD是菱形,故本选项错误;D.∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确.故选D.【题目点拨】本题考查了平行四边形的性质,菱形的判定方法;注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.10、A【解题分析】

原计划每天绿化x米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【题目详解】原计划每天绿化x米,则实际每天绿化(x+10)米,由题意得,,故选A.【题目点拨】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.二、填空题(每小题3分,共24分)11、一【解题分析】

根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.【题目详解】∵一次函数y=-4x-5,k=-4<0,b=-5<0,∴该函数经过第二、三、四象限,不经过第一象限,故答案为:一.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.12、1【解题分析】

根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.【题目详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5(cm);∴AD+BD-AB=1AD-AB=10-8=1cm;故橡皮筋被拉长了1cm.

故答案是:1.【题目点拨】此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.13、【解题分析】

已知点,根据两点关于轴的对称,横坐标不变,纵坐标互为相反数,即可得出Q的坐标.【题目详解】∵点)与点Q关于轴对称,∴点Q的坐标是:.故答案为【题目点拨】考查关于轴对称的点的坐标特征,横坐标不变,纵坐标互为相反数.14、【解题分析】

利用二次根式的性质()及绝对值的性质化简(),即可确定出x的范围.【题目详解】解:∵,∴.∴,即.故答案为:.【题目点拨】本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键.15、L【解题分析】

由前4分钟的进水量求得每分钟的进水量,后8分钟的进水量求得每分钟的出水量.【题目详解】前4分钟的每分钟的进水量为20÷4=5,每分钟的出水量为5-(30-20)÷8=.故答案为L.【题目点拨】从图象中获取信息,首先要明确两坐标轴的实际意义,抓住交点,起点,终点等关键点,明确函数图象的变化趋势,变化快慢的实际意义.16、m<1【解题分析】

分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m的范围即可.【题目详解】去分母得:m-5=t-2,解得:t=m-1,由分式方程的解为负数,得到m-1<0,且m-1≠2,解得:m<1,故答案为:m<1.【题目点拨】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.17、.【解题分析】

方程合并后,将x系数化为1,即可求出解.【题目详解】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:.18、-0.1【解题分析】试题解析:原式=0.4-0.7=-0.1.故答案为:-0.1.三、解答题(共66分)19、(1)S△DAC=1;(2)存在,点P的坐标是(5,2);(3)S=﹣x2+7x(4≤x<6).【解题分析】

(1)想办法求出A、D、C三点坐标即可解决问题;(2)存在.根据OB=PE=2,利用待定系数法即可解决问题;(3)利用梯形的面积公式计算即可;【题目详解】(1)当y=0时,x+2=0,∴x=﹣4,点A坐标为(﹣4,0)当y=0时,﹣2x+12=0,∴x=6,点C坐标为(6,0)由题意,解得,∴点D坐标为(4,4)∴S△DAC=×10×4=1.(2)存在,∵四边形BOEP为矩形,∴BO=PE当x=0时,y=2,点B坐标为(0,2),把y=2代入y=﹣2x+12得到x=5,点P的坐标是(5,2).(3)∵S=(OB+PE)•OE∴S=(2﹣2x+12)•x=﹣x2+7x(4≤x<6).【题目点拨】本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.20、略【解题分析】

证明:∵BD⊥AC,CE⊥AB∴∠ADB=∠AEC=90°在△ABD和△AEC中∴△ABD≌△ACE(AAS)∴BD=CE.21、(1)详见解析;(2)当∠BAC=150°时,四边形ADEF是矩形;(3)∠BAC=60°时,这样的平行四边形ADEF不存在.【解题分析】

(1)根据等边三角形的性质得出AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,求出∠DBE=∠ABC,根据SAS推出△DBE≌△ABC,根据全等得出DE=AC,求出DE=AF,同理AD=EF,根据平行四边形的判定推出即可;(2)当AB=AC时,四边形ADEF是菱形,根据菱形的判定推出即可;当∠BAC=150°时,四边形ADEF是矩形,求出∠DAF=90°,根据矩形的判定推出即可;(3)这样的平行四边形ADEF不总是存在,当∠BAC=60°时,此时四边形ADEF就不存在.【题目详解】(1)证明:∵△ABD、△BCE和△ACF是等边三角形,∴AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,∴∠DBE=∠ABC=60°﹣∠EBA,在△DBE和△ABC中,∴△DBE≌△ABC,∴DE=AC,∵AC=AF,∴DE=AF,同理AD=EF,∴四边形ADEF是平行四边形;(2)解:当∠BAC=150°时,四边形ADEF是矩形,理由是:∵△ABD和△ACF是等边三角形,∴∠DAB=∠FAC=60°,∵∠BAC=150°,∴∠DAF=90°,∵四边形ADEF是平行四边形,∴四边形ADEF是矩形;(3)解:这样的平行四边形ADEF不总是存在,理由是:当∠BAC=60°时,∠DAF=180°,此时点D、A、F在同一条直线上,此时四边形ADEF就不存在.【题目点拨】本题考查了菱形的判定,矩形的判定,平行四边形的判定,等边三角形的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,难度适中.22、1【解题分析】

根据平行四边形的周长求出BC+CD=20,再根据平行四边形的面积求出BC=CD,然后求出CD的值,再根据平行四边形的面积公式计算即可得解.【题目详解】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF•CD=6CD=6×8=1.【题目点拨】本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.23、(1);(2)3.【解题分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论