2024届吉林省白山长白县联考数学八下期末学业质量监测模拟试题含解析_第1页
2024届吉林省白山长白县联考数学八下期末学业质量监测模拟试题含解析_第2页
2024届吉林省白山长白县联考数学八下期末学业质量监测模拟试题含解析_第3页
2024届吉林省白山长白县联考数学八下期末学业质量监测模拟试题含解析_第4页
2024届吉林省白山长白县联考数学八下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省白山长白县联考数学八下期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在边长为2的菱形中,,,,则的周长为()A.3 B.6 C. D.2.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>33.矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为()A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm24.若,,是Rt△ABC的三边,且,是斜边上的高,则下列说法中正确的有几个()(1),,能组成三角形(2),,能组成三角形(3),,能组成直角三角形(4),,能组成直角三角形A.1 B.2 C.3 D.45.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>0 B.x<0 C.x>-1 D.x>26.一元二次方程4x2+1=3x的根的情况是(

)A.没有实数根

B.只有一个实数根

C.有两个相等的实数根

D.有两个不相等的实数根7.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为()A.2 B.3 C. D.8.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB//DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形9.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF=2,则菱形ABCD的边长为(

)A.

B.2

C.2

D.410.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.a2=b2﹣c2 B.c2=2a2 C.a=b D.∠C=90°二、填空题(每小题3分,共24分)11.若是关于的一元二次方程的一个根,则____.12.一次函数的图象与y轴的交点坐标________________.13.如图,将长方形纸片折叠,使边落在对角线上,折痕为,且点落在对角线处.若,,则的长为_____.14.如图,用若干个全等正五边形进行拼接,使相邻的正五边形都有一条公共边,这样恰好可以围成一圈,且中间形成一个正多边形,则这个正多边形的边数等于_________.15.在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.16.要使分式2x-1有意义,则x17.计算:=__.18.根据图中的程序,当输入数值﹣2时,输出数值为a;若在该程序中继续输入数值a时,输出数值为_____.三、解答题(共66分)19.(10分)已知:如图,在中,的平分线交于点,的平分线交于点,交于点.求证:.20.(6分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.(1)点的坐标是________,点的坐标是________;(2)直线上有一点,若,试求出点的坐标;(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.21.(6分)(1)解分式方程:(2)解不等式组,并在数轴上表示其解集.22.(8分)综合与实践(问题情境)在综合与实践课上,同学们以“矩形的折叠”为主题展开数学活动,如图1,在矩形纸片ABCD中,AB=4,BC=5,点E,F分别为边AB,AD上的点,且DF=3。(操作发现)(1)沿CE折叠纸片,B点恰好与F点重合,求AE的长;(2)如图2,延长EF交CD的延长线于点M,请判断△CEM的形状,并说明理由。(深入思考)(3)把图2置于平面直角坐标系中,如图3,使D点与原点O重合,C点在x轴的负半轴上,将△CEM沿CE翻折,使点M落在点M′处.连接CM′,求点M′的坐标.23.(8分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,点B的对应点为B′.(1)证明:AE=CF;(2)若AD=12,DC=18,求DF的长.24.(8分)如图1,直线l1:y=﹣12x+3与坐标轴分别交于点A,B,与直线l2(1)求A,B两点的坐标;(2)求△BOC的面积;(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.①当OA=3MN时,求t的值;②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.25.(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.26.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

利用菱形的性质可得,AD=AB=BC=CD=2,∠ADC=120°由30°的直角三角形可得利用勾股定理得同理可得,∠FDC=30°,可证△DEF是等边三角形继而可得△DEF的周长为【题目详解】解:在菱形ABCD中,AD=AB=BC=CD=2∵DE⊥AB∴∠AED=90°∵∠A=60°∴∠ADE=30°,∠ADC=120°∴∴同理,∠FDC=30°∴∠EDF=60°,∵∴△DEF是等边三角形∴∴△DEF的周长为故答案为:C【题目点拨】本题考查了菱形的性质以及勾股定理和等边三角形的判定,正确掌握菱形的性质及含30°的直角三角形的性质是解题的关键.2、D【解题分析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【题目详解】∵一次函数,随的增大而增大,∴k-3>0,解得:k>3,故选D.【题目点拨】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握一次函数的性质是解题关键.3、D【解题分析】

根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【题目详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠AEB=∠ABE,

∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.

∴矩形ABCD的面积是:1×5=10cm1;

当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,

∴矩形ABCD的面积是:5×3=15cm1.

故矩形的面积是:10cm1或15cm1.

故选:D.【题目点拨】本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.4、C【解题分析】

根据勾股定理的逆定理和三角形的三边关系进行逐个分析即可.【题目详解】(1)a2+b2=c2,根据两边之和得大于第三边,故本项说法错误;(2)∵,,又∵a+b>c,∴,∴,即本项说法正确;(3)因为(c+h)2-h2=c2+2ch,ch=ab(直角三角形面积=两直角边乘积的一半=斜边和斜边上的高乘积的一半)∴2ch=2ab,∴(c+h)2-h2=c2+2ch=a2+b2+2ab=(a+b)2,所以本项说法正确;(4)因为,所以本项说法正确.所以说法正确的有3个.故选:C.【题目点拨】本题主要考查直角三角形的性质,勾股定理的逆定理,三角形的三边关系,关键在于熟练运用勾股定理的逆定理,认真的进行计算.5、C【解题分析】

首先找到当y>0时,图象所在位置,再根据图象可直接得到答案.【题目详解】当y>0时,图象在x轴上方,

∵与x交于(-1,0),

∴y>0时,自变量x的取值范围是x>-1,

故选:C.【题目点拨】考查了一次函数与一元一次不等式,关键是能从图象中找到对应的直线.6、A【解题分析】

先求出△的值,再判断出其符号即可.【题目详解】解:原方程可化为:4x2﹣3x+1=0,∵△=32﹣4×4×1=-7<0,∴方程没有实数根.故选A.7、A【解题分析】

如图,延长FD到G,使DG=BE,连接CG、EF,证△GCF≌△ECF,得到GF=EF,再利用勾股定理计算即可.【题目详解】解:如图,延长FD到G,使DG=BE,连接CG、EF∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)∴CG=CE,∠DCG=∠BCE∴∠GCF=45°在△GCF与△ECF中∵GC=EC,∠GCF=∠ECF,CF=CF∴△GCF≌△ECF(SAS)∴GF=EF∵CE=,CB=6∴BE===3∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x∴EF==∴∴x=4,即AF=4∴GF=5∴DF=2∴CF===故选A.【题目点拨】本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.8、B【解题分析】试题解析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.9、A【解题分析】

连接AC、BD交于O,根据菱形的性质得到AC⊥BD,OA=OC,OB=OD,根据三角形中位线定理、矩形的判定定理得到四边形EFGH是矩形,根据勾股定理计算即可.【题目详解】连接AC、BD交于O,

∵四边形ABCD是菱形,

∴AC⊥BD,OA=OC,OB=OD,

∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=AC,EH=BD,EF∥AC,EH∥BD,∴四边形EFGH是平行四边形,EH⊥EF,∴四边形EFGH是矩形,∵EH=2EF=2,

∴OB=2OA=2,∴AB=.故选:A.【题目点拨】考查的是中点四边形,掌握菱形的性质、三角形中位线定理是解题的关键.10、A【解题分析】

根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.【题目详解】解:设∠A、∠B、∠C分别为x、x、2x,则x+x+2x=180°,解得,x=45°,∴∠A、∠B、∠C分别为45°、45°、90°,∴a2+b2=c2,A错误,符合题意,c2=2a2,B正确,不符合题意;a=b,C正确,不符合题意;∠C=90°,D正确,不符合题意;故选:A.【题目点拨】本题考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.二、填空题(每小题3分,共24分)11、0【解题分析】

根据一元二次方程的解即可计算求解.【题目详解】把x=-2代入方程得,解得k=1或0,∵k2-1≠0,k≠±1,∴k=0【题目点拨】此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.12、(0,-2)【解题分析】

根据一次函数与y轴的交点得横坐标等于0,将x=0代入y=x-2,可得y的值,从而可以得到一次函数y=x-2的图象与y轴的交点坐标.【题目详解】将x=0代入y=x−2,可得y=−2,故一次函数y=x−2的图象与y轴的交点坐标是(0,−2).故答案为:(0,-2)【题目点拨】此题考查一次函数图象上点的坐标特征,解题关键在于一次函数与y轴的交点得横坐标等于013、1.5【解题分析】

首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC-CD′=2,AE=4-x,再根据勾股定理可得方程22+x2=(4-x)2,再解方程即可.【题目详解】∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D'EC,∴D'C=DC=3,DE=D'E,设ED=x,则D'E=x,AD'=AC−CD'=2,AE=4−x,在Rt△AED'中:(AD')2+(ED')2=AE2,即22+x2=(4−x)2,解得:x=1.5.故ED的长为1.5.【题目点拨】本题考查折叠问题、矩形的性质和勾股定理,解题的关键是能根据折叠前后对应线段相等,表示出相应线段的长度,然后根据勾股定理列方程求出线段的长度.14、1【解题分析】

首先求得正五边形围成的多边形的内角的度数,然后根据多边形的内角和定理即可求得答案.【题目详解】解:正五边形的内角度数是:=18°,

则正五边形围成的多边形的内角的度数是:360°−2×18°=144°,

根据题意得:180(n−2)=144n,

解得:n=1.

故答案为1.【题目点拨】本题考查了多边形的内角和定理,正确理解定理,求得围成的多边形的内角的度数是关键.15、1【解题分析】如图1,当点D与点Q重合时,根据翻折对称性可得A′D=AD=13,在Rt△A′CD中,A′D2=A′C2+CD2,即132=(13-A′B)2+52,解得A′B=1,如图2,当点P与点B重合时,根据翻折对称性可得A′B=AB=5,∵5-1=1,∴点A′在BC边上可移动的最大距离为1.16、x≠1【解题分析】根据题意得:x-1≠0,即x≠1.17、2【解题分析】解:.故答案为.18、8.【解题分析】

观察图形我们可以得出x和y的关系式为:是x≥1时关系式为y=x+5,当x<1是y=−x+5,然后将x=-2代入y=−x+5,求出y值即a值,再把a值代入关系式即可求出结果.【题目详解】当x=-2时,∵x=−2<1,∴y=a=−x+5=6;当x=6时,.∵x=6≥1,∴y=x+5=8.故答案为:8.【题目点拨】本题考查了代数式求值,掌握该求值方法是解答本题的关键.三、解答题(共66分)19、证明见解析.【解题分析】

根据平行四边形的性质可得:AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,即可证明AE=DF.【题目详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,同理可得:DF=CD,∴AE=DF,即AF+EF=DE+EF,∴AF=DE.【题目点拨】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定等知识点的应用,能综合运用性质进行推理是解此题的关键,题目比较典型,难度适中.20、(1),;(2)或;(3).【解题分析】

(1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;(2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;(3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.【题目详解】解:(1)将A(8,0)代入得:,解得:b=6;∴令x=0,得:y=6,∴点的坐标为∵C为AB中点,∴的坐标为故答案为:点的坐标为,的坐标为;(2)或由题可得S△AOC=∵∴S△NOA=设S△NOA=解得:n=6或n=10将n=6代入得;将n=10代入得;∴或(3)依照题意画出图形,如图所示.解图1解图2∵.设直线的解析式为,则有,解得:,∴直线的解析式为.∵点在直线上,点在直线上,点的横坐标为,轴,∴,当时,;当时,.故与的函数解析式为.【题目点拨】本题考查待定系数法求函数解析式,坐标系中三角形面积的算法以及线段长度的算法,在计算的时注意分类讨论.21、(1)原方程无解;(2)x≤1,数轴见解析;【解题分析】

(1)利用解分式方程的一般步骤求解即可.(2)求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【题目详解】(1)去分母,方程两边同时乘以(x-3),可得:x-2=2(x-3)+1,

去括号可得:x-2=2x-6+1,

解得x=3,

检验:当x=3时,x-3=0,

∴x=3是分式方程的增根,原方程无解.(2)解:,

∵解不等式①得:x≤1,

解不等式②得:x<4,

∴不等式组的解集为:x≤1,

在数轴上表示不等式组的解集为:

.【题目点拨】此题考查解分式方程,解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.22、(1)AE的长为;(2)ΔCEM是等腰三角形,理由见解析;(3)M′(-,5).【解题分析】

(1)由矩形的性质得出∠A=90°,AD=BC=5,由折叠的性质得:FE=BE,设FE=BE=x,则AE=AB-BE=4-x,求出AF=AD-DF=5-3=2,在Rt△AEF中,由勾股定理得出方程,解方程即可;

(2)由矩形的性质得出AB∥CD,由平行线的性质得出∠BEC=∠MCE,由折叠的性质得:∠BEC=∠CEM,得出∠MCE=∠CEM,证出MC=ME即可;(3)由平行线得出△DFM∽△AFE,得出,解得:DM=,得出ME=MC=CD+DM=,由折叠的性质得:M'E=ME=,得出AM'=M'E+AE=,即可得出答案.【题目详解】(1)设AE=x.则BE=4-x由折叠知:EF=BE=4-x∵四边形ABCD为矩形∴AD=BC=5∴AF=AD-DF=5-3=2在Rt△AEF中,由勾股定理得AE2+AF2=EF2即∴答:AE的长为;(2)ΔCEM是等腰三角形,理由如下:由折叠知:∠BEC=∠MEC∵四边形ABCD为矩形∴AB∥CD∴∠BEC=∠MCE∴∠MEC=∠MCE∴ME=MC∴ΔCEM是等腰三角形(3)由折叠知:M′E=ME,M′C=MC由(2)得:ME=MC∴M′E=ME=MC=M′C∴四边形M′CME是菱形.由题知:E(-,5),F(0,3)设直线EF的解析式为y=kx+b∴∴令y=0得∴M(,0)∴0M=∴CM=4+=∴M′E=MC=∴M′A=M′E+EA=+=∴.M′(-,5).【题目点拨】四边形综合题目,考查了矩形的性质、翻折变换的性质、坐标与图形性质、勾股定理、等腰三角形的判定、相似三角形的判定与性质等知识,本题综合性强,解题的关键是灵活运用所学知识解决问题23、(1)见解析;(2)5.【解题分析】

(1)根据折叠的性质以及矩形的性质,运用ASA即可判定△ADF≌△AB′E;

(2)先设FA=FC=x,则DF=DC-FC=18-x,根据Rt△ADF中,AD2+DF2=AF2,即可得出方程122+(18-x)2=x2,解得x=1.所在DF=18-1=5.【题目详解】(1)证明:∵四边形ABCD是矩形,

∴∠D=∠C=∠B′=90°,AD=CB=AB′,

∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,

∴∠DAF=∠B′AE,

在△ADF和△AB′E中,,

∴△ADF≌△AB′E(ASA).

∴AE=CF;

(2)解:由折叠性质得FA=FC,

设FA=FC=x,则DF=DC-FC=18-x,

在Rt△ADF中,AD2+DF2=AF2,

∴122+(18-x)2=x2.

解得x=1.

∴DF=18-1=5【题目点拨】本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以的运用,解决问题的关键是:设相关线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.24、(1)A(6,0)B(0,3);(2)S△OBC=3;(3)①t=83或163;②t=(6+22)s或(6﹣2【解题分析】

(1)利用待定系数法即可解决问题;(2)构建方程组确定点C坐标即可解决问题;(3)根据绝对值方程即可解决问题;(4)分两种情形讨论:当OC为菱形的边时,可得Q1-22,0,Q222,0,Q【题目详解】(1)对于直线y=-12x+3,令x=0得到y=3,令A(6,0)B(0,3).(2)由y=-12x+3∴C(2,2),∴S△(3)①∵M6-t,-∴MN=|-1∵OA=3MN,∴6=3|3解得t=83或16②如图3中,由题意OC=22当OC为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论