版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省合肥二中学内地西藏班(学校)数学八年级第二学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是()月份123456用水量/t36456aA.4,5B.4.5,6C.5,6D.5.5,62.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b3.某校九年级班全体学生2016年初中毕业体育考试的成绩统计如表:成绩分15192224252830人数人2566876根据表中的信息判断,下列结论中错误的是A.该班一共有40名同学 B.该班学生这次考试成绩的众数是25分C.该班学生这次考试成绩的中位数是25分 D.该班学生这次考试成绩的平均数是25分4.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±25.使有意义的a的取值范围为()A.a≥1 B.a>1 C.a≥﹣1 D.a>﹣16.如图,第一个图形中有4个“”,第二个图形中有7个“”,第三个图形中有11个“”,按照此规律下去,第8个图形中“”的个数为().A.37 B.46 C.56 D.677.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定8.某区选取了10名同学参加兴隆台区“汉字听取大赛”,他们的年龄(单位:岁)记录如下:年龄(单位:岁)1314151617人数22321这些同学年龄的众数和中位数分别是()A.15,15 B.15,16 C.3,3 D.3,159.甲、乙、丙、丁四人进行射击测试,每人射击10次,四人的平均成绩均是9.4环,方差分别是0.43,1.13,0.90,1.68,则在本次射击测试中,成绩最稳定的是()A.甲 B.乙 C.丙 D.丁10.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.,, C.6,8,10 D.9,12,1511.如图,矩形中,对角线、交于点.若,,则的长为()A.6 B.5 C.4 D.312.下列调查的样本所选取方式,最具有代表性的是()A.在青少年中调查年度最受欢迎的男歌手B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查D.对某市的出租车司机进行体检,以此反映该市市民的健康状况二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.14.如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=_____.15.一次函数与的图象如图,则的解集是__.16.如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.17.若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.18.如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=6,BE=2,DH=1,则图中阴影部分的面积是____.三、解答题(共78分)19.(8分)如图,在方格纸中每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上(1)作出△ABC以点C为旋转中心,顺时针旋转90°后的△A1B1C;(2)以点O为对称中心,作出与△ABC成中心对称的△A2B2C220.(8分)如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形.(2)当点E从A点运动到C点时;①求证:∠DCG的大小始终不变;②若正方形ABCD的边长为2,则点G运动的路径长为.21.(8分)某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如下表所示:面试笔试成绩评委1评委2评委392889086(1)请计算小王面试平均成绩;(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.22.(10分)已知:如图,在中,。(1)尺规作图:作线段的垂直平分线交于点,垂足为点,连接;(保留作图痕迹,不写作法);(2)求证:是等腰三角形。23.(10分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,∠CAB=60°,BD=2,求CD的长.24.(10分)已知:线段a,c.求作:△ABC,使BC=a,AB=c,∠C=90°25.(12分)计算(1);(2)26.如图1,在正方形中,是对角线,点在上,是等腰直角三角形,且,点是的中点,连结与.(1)求证:.(2)求证:.(3)如图2,若等腰直角三角形绕点按顺时针旋转,其他条件不变,请判断的形状,并证明你的结论.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【题目详解】解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),
∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,
则该户今年1至6月份用水量的中位数为=5.5、众数为6,
故选:D.【题目点拨】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.2、B【解题分析】
根据两内项之积等于两外项之积对各选项分析判断即可得解.【题目详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【题目点拨】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.3、D【解题分析】
结合表格根据众数、平均数、中位数的概念即可求解.【题目详解】该班人数为:,得25分的人数最多,众数为25,第20和21名同学的成绩的平均值为中位数,中位数为:,平均数为:.故错误的为D.故选:D.【题目点拨】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.4、C【解题分析】由题意可知:,解得:x=2,故选C.5、C【解题分析】
根据二次根式有意义的条件:被开方数是非负数列不等式,解之即可得出答案.【题目详解】∵有意义,∴,解得a≥﹣1.故选C.【题目点拨】本题考查了二次根式有意义的条件.利用二次根式定义中的限制性条件:被开方数是非负数列出不等式是解题的关键.6、B【解题分析】
设第n个图形有an个“•”(n为正整数),观察图形,根据给定图形中“•”个数的变化可找出变化规律“an=+1(n为正整数)”,再代入n=8即可得出结论.【题目详解】设第n个图形有an个“•”(n为正整数).
观察图形,可知:a1=1+2+1=4,a2=1+2+3+1=7,a3=1+2+3+4+1=11,a4=1+2+3+4+5+1=16,…,
∴an=1+2+…+n+(n+1)+1=+1(n为正整数),
∴a8=+1=1.
故选:B.【题目点拨】考查了规律型:图形的变化类,根据各图形中“•”个数的变化找出变化规律“an=+1(n为正整数)”是解题的关键.7、B【解题分析】
从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【题目详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC===4(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.【题目点拨】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.8、A【解题分析】
根据众数的定义和中位数的定义求解即可,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【题目详解】解:根据10名学生年龄人数最多的即为众数:15,
根据10名学生,第5,6名学生年龄的平均数即为中位数为:15+152【题目点拨】本题考查了众数和中位数的定义,解题的关键是牢记定义,并能熟练运用.9、A【解题分析】
比较方差的大小,即可判定方差最小的较为稳定,即成绩最稳的是甲同学.【题目详解】∵甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.43,1.13,0.90,1.68,∴,∴成绩最稳定的同学是甲.故选A.【题目点拨】此题主要考查利用方差,判定稳定性,熟练掌握,即可解题.10、B【解题分析】
根据勾股定理的逆定理,计算每个选项中两个较小数的平方的和是否等于最大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.【题目详解】A.,能组成直角三角形,故此选项错误;B.,不能组成直角三角形,故此选项正确;C.,能组成直角三角形,故此选项错误;D.,能组成直角三角形,故此选项错误;故选:B.【题目点拨】本题考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11、B【解题分析】
由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.【题目详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=AC=1,∠ABC=90°,∴∠OBC=∠ACB=30°∵∠AOB=∠OBC+∠ACB∴∠AOB=60°∵OA=OB∴△AOB是等边三角形∴AB=OA=1故选:B【题目点拨】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.12、B【解题分析】试题解析:A.只在青少年中调查不具有代表性,故本选项不符合题意;B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;C.只向八年级的同学进行调查不具有代表性,故本选项不符合题意;D.反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.故选B.二、填空题(每题4分,共24分)13、1【解题分析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.【题目详解】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=BD,∵BC=BD,∴CD=BC=BD,∴△BCD是等边三角形,∴∠B=60°,∴∠A=1°.故答案为:1.【题目点拨】考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.14、22.5°【解题分析】
根据正方形的对角线平分一组对角求出∠CBE=45°,再根据等腰三角形两底角相等求出∠BCE=67.5°,然后根据∠DCE=∠BCD-∠BCE计算即可得解.【题目详解】∵四边形ABCD是正方形,∴∠CBE=45°,∠BCD=90°,∵BE=BC,∴∠BCE=(180°-∠BCE)=×(180°-45°)=67.5°,∴∠DCE=∠BCD-∠BCE=90°-67.5°=22.5°.故答案为22.5°.【题目点拨】本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,需熟记.15、【解题分析】
不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.【题目详解】解:不等式的解集是.故答案为:.【题目点拨】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、1【解题分析】
由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.【题目详解】解:,,四边形是平行四边形,,同理可得:,,,四边形面积四边形面积(四边形面积四边形面积),故答案为:1.【题目点拨】本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.17、﹣1【解题分析】
直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.【题目详解】∵ab=-1,a+b=1,∴a1b+ab1=ab(a+b)=-1×1=-1.故答案为-1.【题目点拨】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.18、11【解题分析】
根据平移的性质可得到相等的边与角,利用平行线分线段成比例可求出EC,再根据即可得到答案.【题目详解】解:由平移的性质知,DE=AB=6,HE=DE-DH=5,CF=BE=2,HC∥DF,∠DEF=∠B=90°,∴HE:DE=EC:EF=EC:(EC+CF),即5:6=EC:(EC+2),∴EC=10,EF=EC+CF=10+2=12故答案为:11.【题目点拨】本题利用了平行线截线段对应成比例和平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三、解答题(共78分)19、(1)见解析;(1)见解析.【解题分析】
(1)直接利用旋转的性质分别得出对应点位置进而得出答案;(1)直接利用关于点对称的性质得出对应点位置进而得出答案.【题目详解】(1)如图所示:△A1B1C;(1)如图所示:△A1B1C1.【题目点拨】此题主要考查了旋转变换,正确得出对应点位置是解题关键.20、(1)详见解析;(2)①详见解析;②【解题分析】
(1)要证明矩形DEFG为正方形,只需要证明它有一组临边(DE和EF)相等即可,而要证明两条线段相等,需证明它们所在的三角形全等,如下图本小题的关键是证明△EMF≌△END,∠MEF=∠NED可用等角的余角证明,EM=EN可用角平分线上的点到角两边距离相等,∠EMF和∠END为一组直角相等,所以可以用ASA证明它们全等;(2)此类题,前面的问题是给后面做铺垫,第一问已经证明四边形DEFG为正方形,结合第一问我们很容易发现并证明△ADE≌△CDG,从而得到∠DCG=∠CAD=45°;(3)当当E点在A处时,点G在C处;当E点在C处时,点G在AD的延长线上,并且AD=DG,以CD为边作正方形,我们会发现G点的运动轨迹刚好是正方形的对角线,它的长度等于.【题目详解】证明:(1)作EM⊥BC,EN⊥CD,∵四边形ABCD为正方形∴∠DCB=90°,∠ACB=∠ACD=45°又∵EM⊥BC,EN⊥CD,∴EM=EN(角平分线上的点到角两边距离相等),∠MEN=90°,∴∠MEF+∠NEF=90°,∵四边形DEFG为矩形,∴∠DEF=90°,∴∠NED+∠NEF=90°,∴∠MEF=∠NED,在△EMF和△END中∵∴△EMF≌△END,∴DE=DF,∴矩形DEFG为正方形;(2)①证明:∵正方形ABCD、DEFG∴AD=CD,ED=GD∵∠ADE+∠DEC=90°,∠CDG+∠EDC=90°∴∠ADE=∠CDG在△ADE和△CDG中,∵AD=CD,∠ADE=∠CDG,ED=GD∴△ADE≌△CDG∴∠DCG=∠EAD=45°∴∠DCG的大小始终保持不变②以CD为边作正方形DCPQ,连接QC∴∠DCQ=45°,又∵∠DCG=45°∴C、G、Q在同一条直线上,当E点在A处时,点G在C处;当E点在C处时,点G在Q处,∴G点的运动轨迹为QC,∵正方形ABCD的边长为2所以QC=,即点G运动的路径长为【题目点拨】(1)本题考查正方形的判定定理,有一组临边相等的矩形为正方形,所以此题的关键是证明DE=DF,我们可通过化辅助线,证明△ADE≌△CDG;(2)①本题考查的是全等三角形的判定定理和性质定理,结合第一问通过观察图象,我们会发现△ADE≌△CDG,所以∠DCG=∠EAD=45°;②做这道题时,我们先构造模型,观察一下G点的起始位置和终点位置,结合①,我们会发现其实G点的运动轨迹刚好是正方形DCPQ的对角线,所以点G运动的路径长为.21、(1)小王面试平均成绩为88分(2)小王的最终成绩为89.6分【解题分析】(1)(分)∴小王面试平均成绩为88分(2)(分)∴小王的最终成绩为89.6分22、(1)见解析;(2)是等腰三角形,见解析.【解题分析】
(1)根据垂直平分线的作法作出AB的垂直平分线交BC于点D,垂足为F,再连接AD即可求解;
(2)根据等腰三角形的性质和线段垂直平分线的性质得到∠1=∠C=∠B=36°,再根据三角形内角和定理和三角形外角的性质得到∠DAC=∠ADC,再根据等腰三角形的判定即可求解.【题目详解】解:(1)如图,作出的垂直平分线,连接,(2)∵,∴,∴,∵是的垂直平分线,∴,∴,∴,∴,∴,∴是等腰三角形.【题目点拨】本题考查了作图-复杂作图,涉及的知识点有:垂直平分线的作法,等腰三角形的性质,线段垂直平分线的性质得,三角形内角和定理,三角形外角的性质以及等腰三角形的判定等.23、1【解题分析】
根据角平分线的定义得到∠CAD=∠CAB=30°,根据三角形的内角和得到∠B=30°,根据直角三角形的性质即可得到结论.【题目详解】∵AD是∠BAC的平分线,∠CAB=60°,∴∠CAD=∠CAB=30°,∵∠C=90°,∠CAB=60°,∴∠B=30°,∴AD=BD=2,∵∠CAD=30°,∴CD=12AD=1【题目点拨】本题考查了解直角三角形,锐角三角函数,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题八恒定电流实验九测定电源的电动势和内阻练习含答案
- 草莓购买合同
- 江苏地区高一年级信息技术一年教案7资源管理器教案
- 江苏地区高一年级信息技术一年教案26 IF语句教案
- 2024年高中政治 第一单元 公民的政治生活 第二课 我国公民的政治参与 3 民主管理:共创幸福生活教案1 新人教版必修2
- 2024-2025学年新教材高中物理 第七章 万有引力与宇宙航行 4 宇宙航行(1)教案 新人教版必修2
- 2024-2025学年新教材高中地理 第3章 天气的成因与气候的形成 第2节 气压带、风带对气候的影响教案 中图版选择性必修第一册
- 高考地理一轮复习第十二章环境与发展第二节中国国家发展战略课件
- 宝宝防疫针委托书
- 人教A版广东省深圳实验学校高中部2023-2024学年高一上学期第三阶段考试数学试题
- 驾驶证学法减分(学法免分)试题和答案(50题完整版)1650
- 对话大国工匠 致敬劳动模范学习通超星期末考试答案章节答案2024年
- 病理学实验2024(临床 口腔)学习通超星期末考试答案章节答案2024年
- 半期评估试卷(1-4单元)-2024-2025学年四年级上册数学北师大版
- python程序设计-说课
- XX学校推广应用“国家中小学智慧教育平台”工作实施方案
- 拟钙剂在慢性肾脏病患者中应用的专家共识简介
- 失业保险待遇申请表
- 220KV线路运维实施方案
- 英语四年级上册 4AM3U2P3课件
- 足球理论考试
评论
0/150
提交评论