版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市名校2024届数学八年级第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.根据天气预报,2018年6月20日双流区最高气温是,最低气温是,则双流区气温的变化范围是()A. B. C. D.2.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1) B.y随x的增大而增大C.图象经过第一、二、三象限 D.当x>时,y<03.同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是()A.10 B.8 C.9 D.64.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,AC=12,菱形ABCD的面积为96,则OH的长等于()A.6 B.5 C.4 D.36.为了解某社区居民的用水情况,随机抽取20户居民进行调查,下表是所抽查居民2018年5月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户数)128621月用水量(吨)458121520A.中位数是10(吨) B.众数是8(吨)C.平均数是10(吨) D.样本容量是207.下列所叙述的图形中,全等的两个三角形是()A.含有45°角的两个直角三角形 B.腰相等的两个等腰三角形C.边长相等的两个等边三角形 D.一个钝角对应相等的两个等腰三角形8.如图,在平行四边形ABCD中,对角线AC和BD相交于点O,点E是BC边的中点,OE=1,则AB的长为()A.2 B.1C. D.49.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤210.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6 B.7 C.2 D.2二、填空题(每小题3分,共24分)11.如图,,,,若,则的长为______.12.如图,△ABC是等边三角形,点A(-3,0),点B(3,0),点D是y轴上的一个动点,连接BD,将线段BD绕点B逆时针旋转60°,得到线段BE,连接DE,得到△BDE,则OE的最小值为______.13.分解因式:m2(a﹣2)+m(2﹣a)=.14.在一个长6m、宽3m、高2m的房间里放进一根竹竿,竹竿最长可以是________.15.若二次根式有意义,则x的取值范围是▲.16.在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)17.如图,中,,,的垂直平分线分别交、于、,若,则________.18.2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.三、解答题(共66分)19.(10分)“西瓜足解渴,割裂青瑶肤”,西瓜为夏季之水果,果肉味甜,能降温去暑;种子含油,可作消遣食品;果皮药用,有清热、利尿、降血压之效.某西瓜批发商打算购进“黑美人”西瓜与“无籽”西瓜两个品种的西瓜共70000千克.(1)若购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,求“黑美人”西瓜最多购进多少千克?(2)该批发商按(1)中“黑美人”西瓜最多重量购进,预计“黑美人”西瓜售价为4元/千克;“无籽”西瓜售价为5元/千克,两种西瓜全部售完.由于存储条件的影响,“黑美人”西瓜与“无籽”西瓜分别有与的损坏而不能售出.天气逐渐炎热,西瓜热卖,“黑美人”西瓜的销售价格上涨,“无籽”西瓜的销售价格上涨,结果售完之后所得的总销售额比原计划下降了3000元,求的值.20.(6分)党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).21.(6分)关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)当取满足条件的最大整数时,求方程的根.22.(8分)在中,,是边上的中线,是的中点,过点作交的延长线于点,连接.(1)如图1,求证:(2)如图2,若,其它条件不变,试判断四边形的形状,并证明你的结论.23.(8分)如图,直线l经过点A(1,6)和点B(﹣3,﹣2).(1)求直线l的解析式,直线与坐标轴的交点坐标;(2)求△AOB的面积.24.(8分)已知为原点,点及在第一象限的动点,且,设的面积为.(1)求关于的函数解析式;(2)求的取值范围;(3)当时,求点坐标;(4)画出函数的图象.25.(10分)某学校数学兴趣小组在探究一次函数性质时得到下面正确结论:对于两个一次函数y=k1x+b1和y=k2x+b2,若两个一次函数的图象平行,则k1=k2且b1≠b2;若两个一次函数的图象垂直,则k1•k2=﹣1.请你直接利用以上知识解答下面问题:如图,在平面直角坐标系中,已知点A(0,8),B(6,0),P(6,4).(1)把直线AB向右平移使它经过点P,如果平移后的直线交y轴于点A′,交x轴于点B′,求直线A′B′的解析式;(2)过点P作直线PD⊥AB,垂足为点D,按要求画出直线PD并求出点D的坐标;26.(10分)有大小两种货车,辆大货车与辆小火车一次可以运货吨,辆大货车与辆小货车一次可以运货吨.(1)求辆大货车和辆小货车一次可以分别运多少吨;(2)现有吨货物需要运输,货运公司拟安排大小货车共辆把全部货物一次运完.求至少需要安排几辆大货车?
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据题意列出不等式即可求出答案.【题目详解】解:由于最高气温是30℃,最低气温是23℃,∴23≤t≤30,故选:D.【题目点拨】本题考查不等式,解题的关键是正确理解不等式的定义,本题属于基础题型.2、D【解题分析】根据一次函数的性质,依次分析选项可得答案.解:根据一次函数的性质,依次分析可得,A、x=-2时,y=-2×-2+1=5,故图象必经过(-2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=-2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选D.点评:本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系3、B【解题分析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【题目详解】题目中数据共有5个,
故中位数是按从小到大排列后第三数作为中位数,
故这组数据的中位数是8.
所以B选项是正确的.【题目点拨】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4、A【解题分析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据定义进行分析即可.【题目详解】解:A、既是轴对称图形又是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【题目点拨】此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.5、B【解题分析】
由菱形的面积和对角线AC的长度可求出BD的长,再由勾股定理可求出AD的长,因为菱形的对角线互相垂直得出∠AOD=90°,然后根据直角三角形斜边上的中线性质即可得出结果.【题目详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∵菱形ABCD的面积为96,∴AC•BD=96,∴BD=16,∴AD==10,∵∠AOD=90°,H为AD边中点,∴OH=AD=1.故选B.【题目点拨】本题考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解决问题的关键.6、A【解题分析】
根据中位数、众数、平均数和样本容量的定义对各选项进行判断.【题目详解】解:这组数据的中位数为8(吨),众数为8(吨),平均数=(1×4+2×5+8×8+6×12+2×15+1×1)=10(吨),样本容量为1.故选:A.【题目点拨】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数和中位数.7、C【解题分析】
根据已知条件,结合全等的判定方法对各个选项逐一判断即可.【题目详解】解:A、含有45°角的两个直角三角形,缺少对应边相等,所以两个三角形不一定全等;B、腰相等的两个等腰三角形,缺少两腰的夹角或底边对应相等,所以两个三角形不一定全等;C、边长相等的两个等边三角形,各个边长相等,符合全等三角形的判定定理SSS,所以两个三角形一定全等,故本选项正确;D、一个钝角对应相等的两个等腰三角形的腰长或底边不一定对应相等,所以两个三角形不一定全等,故本选项错误.故选:C.【题目点拨】本题主要考查全等图形的识别,解题的关键是熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、A【解题分析】
首先证明OE是△BCD的中位线,再根据平行四边形的性质即可解决问题.【题目详解】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,∵BE=EC,∴OE=CD,∵OE=1,∴AB=CD=2,故答案为:A【题目点拨】此题考查平行四边形的性质,三角形中位线定理,解题关键在于求出OE是△BCD的中位线9、C【解题分析】
根据二次根式的性质,被开方数大于等于0,就可以求解.【题目详解】解:根据题意得:x﹣1≥0,解得:x≥1.故选:C.【题目点拨】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.10、A【解题分析】
根据题意画出图形,利用勾股定理解答即可.【题目详解】如图,设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=31,根据勾股定理得到斜边==1.故选A.【题目点拨】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(每小题3分,共24分)11、1【解题分析】
作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【题目详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【题目点拨】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.12、【解题分析】
取BC中点G,连接DG,由“SAS”可证△BGD≌△BOE,可得OE=DG,当DG⊥OC时,DG的值最小,由含30°角的直角三角形的性质即可求出DG的值,即OE最小值.【题目详解】如图,取BC中点G,连接DG,OE,∵△ABC是等边三角形,点A(-3,0),点B(3,0),∴AO=BO=3,∠BCO=30°,∠ABC=60°,∴BC=AB=6,∵点G是BC中点,∴CG=BG=OA=OB=3,∵将线段BD绕点B逆时针旋转60°,∴∠DBE=60°,BD=BE,∴∠ABC=∠DBE,∴∠CBD=∠ABE,且BE=BD,BG=OB=3,∴△BGD≌△BOE(SAS),∴OE=DG,∴当DG⊥OC时,DG的值最小,即OE的值最小.∵∠BCO=30°,DG⊥OC∴DG=CG=,∴OE的最小值为.故答案为【题目点拨】本题考查了全等三角形的判定和性质,等边三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.13、m(a﹣2)(m﹣1)【解题分析】试题分析:将m2(a﹣2)+m(2﹣a)适当变形,然后提公因式m(a﹣2)即可.解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).14、1【解题分析】【分析】根据题意画出图形,首先利用勾股定理计算出BC的长,再利用勾股定理计算出AB的长即可.【题目详解】如图,∵侧面对角线BC2=32+22=13,∴CB=m,∵AC=6m,∴AB==1m,∴竹竿最大长度为1m,故答案为:1.【题目点拨】本题考查了勾股定理的应用,解题的关键是画出符合题意的图形,利用数形结合的思想以及勾股定理的知识解决问题.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.15、.【解题分析】
根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【题目详解】根据二次根式被开方数必须是非负数的条件,得.【题目点拨】本题考查二次根式有意义的条件,牢记被开方数必须是非负数.16、大于【解题分析】
分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.【题目详解】∵共有球:2+3+5=10个,∴P白球==,P红球==,∵>,∴摸出白球可能性大于摸出红球可能性.故答案为:大于【题目点拨】本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.17、【解题分析】
先根据垂直平分线的性质,判定AM=BM,再求出∠B=30°,∠CAM=90°,根据直角三角形中30度的角对的直角边是斜边的一半,得出BM=AM=CA,即CM=2BM,进而可求出BC的长.【题目详解】如图所示,连接AM,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∵MN⊥AB,∴BM=2MN=2,∵MN是AB的垂直平分线,∴BM=AM=2,∴∠BAM=∠B=30°,∴∠MAC=90°,∴CM=2AM=4,∴BC=2+4=1.故答案为1.【题目点拨】此题主要考查了等腰三角形的性质,含30°角的直角三角形的性质,以及线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.18、x(x﹣1)=1【解题分析】
设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场比赛,共要比赛1场,可列出方程.【题目详解】设参赛队伍有x支,根据题意得:x(x﹣1)=1故答案为x(x﹣1)=1.【题目点拨】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(共66分)19、(1)最多(2)【解题分析】
(1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克,根据购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,即可得出关于的一元一次不等式,解之取其最大值即可得出结论;(2)根据总价=单价×数量,即可得出关于的一元二次方程,解之取其正值即可得出结论.【题目详解】解:(1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克,依题意,得:,解得:.答:“黑美人”西瓜最多购进40000千克.(2)由题意得:,整理,得:,解得:(舍去).答:的值为1.【题目点拨】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.20、(1)(2)【解题分析】
(1)根据概率公式计算即可;(2)先画树状图得出所有可能的结果,然后根据概率公式计算即可.【题目详解】(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)画树状图:共有12种情况,其中符合题意的有8种,∴【题目点拨】简单事件的概率.21、(1)且;(2),【解题分析】
(1)根据题意可得且,由此即可求得m的取值范围;(2)在(1)的条件下求得m的值,代入解方程即可.【题目详解】(1)关于的一元二次方程有两个不相等的实数根,且.解得且.的取值范围是且.(2)在且的范围内,最大整数为.此时,方程化为.解得,.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.22、(1)见解析;(2)四边形为正方形,见解析【解题分析】
(1)先证明得到AF=DB,于是可证;(2)先证明四边形是平行四边形,再加一组邻边相等证明它是菱形,最后利用等腰三角形三线合一的性质证明有一个直角,从而证明它是正方形.【题目详解】(1)证明:∵是的中点,,,又,,,是边上的中线,,;(2)解:四边形为正方形,理由如下:由(1)得,又,∴四边形为平行四边形,在中,是边上的中线,,∴四边形为菱形,,是边上的中线,∴四边形为正方形.【题目点拨】本题考查了正方形的判定,涉及的知识点有直角三角形斜边中线的性质,全等三角形的判定、平行四边形及菱形、正方形的判定,掌握相关性质定理进行推理论证是解题关键.23、(1)y=2x+4,直线与x轴交点为F(-2,0),与y轴交点为E(0,4);(3)S△AOB=8【解题分析】
试题分析:(1)设直线a的解析式为y=kx+b,用待定系数法求一次函数的解析式即可;(2)设直线a与有轴交于点C,根据S△AOB=S△AOC+S△COB得出答案即可.【题目详解】试题解析:设直线解析式为y=kx+b,把点A(1,6)和点B(-3,-2)代入上式得6=k+b-2=-3k+b解得:k=2,b=4所以,y=2x+4x=0时,y=4y=0时,x=-2所以,直线与x轴交点为F(-2,0),与y轴交点为E(0,4)(2)设直线a与有轴交于点CS△AOB=S△BOF+S△AOF=2×2×+2×6×=2+6=824、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.【解题分析】
(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点P在第一象限即可得出结论;(3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;(4)利用描点法画出函数图象即可.【题目详解】解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),∴S=×8×y=4y.∵x+y=12,∴y=12−x.∴S=4(12−x)=48−4x,∴所求的函数关系式为:S=−4x+48;(2)由(1)得S=−4x+48>0,解得:x<12;又∵点P在第一象限,∴x>0,综上可得x的取值范围为:0<x<12;(3)∵S=12,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国智能门锁行业营销创新战略制定与实施研究报告
- 新形势下汽车服务行业快速做大市场规模战略制定与实施研究报告
- 考察学习“百千万工程”、现代农业产业发展工作情况报告
- 2024年自来水市场调查报告
- 2025年中国珠海旅游业行业市场运行态势及投资战略咨询研究报告
- 湖北省武汉市江汉区2023-2024学年化学九年级上学期末试卷
- 跨境财税知识培训课件
- 2025版12333养老保险政策解读与操作流程合同3篇
- 地方政府对中央政策响应差异化的影响因素及机制分析-基于医保支付方式改革的多案例比较
- 二零二五年度房产抵押权抵押权证合同3篇
- 混凝土预制块护坡施工方案
- 2024年决战行测5000题言语理解与表达一套
- 2024-2034年中国玻塑混合镜头行业市场现状分析及竞争格局与投资发展研究报告
- 在线网课知慧《内经选读(浙中医大)》单元测试考核答案
- 2023医院隔离技术标准-新旧版对比
- 部编版人教版语文八年级下册全册课件
- 围手术期高血糖的管理
- 农贸市场安全生产
- 江西省新余一中学2023-2024学年物理九年级上册期末联考试题含解析
- 仓库智能化建设方案
- 医院门急诊高峰时段合理分流患者的应急预案
评论
0/150
提交评论