版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省哈尔滨六十九八年级数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为()A.4 B.2 C.3 D.22.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是()A. B. C. D.3.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,点B恰好落在AB的中点E处,则∠A等于()A.25° B.30° C.45° D.60°4.化简8aA.4aa B.-4aa C.2a5.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为()A. B. C. D.6.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°7.如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4.58.已知,则式子的值是()A.48 B. C.16 D.129.某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克,=608千克,亩产量的方差分别是="29."6,="2."7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙10.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号
220
225
230
235
240
245
250
数量(双)
3
5
10
15
8
3
2
对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数 B.众数 C.中位数 D.方差二、填空题(每小题3分,共24分)11.一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.12.边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.13.不等式5﹣2x>﹣3的解集是_____.14.不等式组的解集为x>2,则a的取值范围是_____________.15.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则DOE的周长为_____.16.两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_____.17.在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶7.5米、10米,则10秒后两车相距______米;18.化简:___________.三、解答题(共66分)19.(10分)一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?20.(6分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.21.(6分)已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.22.(8分)感知:如图①,在平行四边形中,对角线、交于点.过点的直线分别交边、于点、.易证:(不需要证明).探究:若图①中的直线分别交边、的延长线于点、,其它条件不变,如图②.求证:.应用:在图②中,连结.若,,,,则的长是__________,四边形的面积是__________.23.(8分)如图,正方形,点为对角线上一个动点,为边上一点,且.(1)求证:;(2)若四边形的面积为25,试探求与满足的数量关系式;(3)若为射线上的点,设,四边形的周长为,且,求与的函数关系式.24.(8分)如图,AD∥BC,AC⊥AB,AB=3,AC=CD=1.(1)求BC的长;(1)求BD的长.25.(10分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.26.(10分)如图,直线l在平面直角坐标系中,直线l与y轴交于点A,点B(-3,3)也在直线1上,将点B先向右平移1个单位长度、再向下平移2个单位长度得到点C,点C恰好也在直线l上.(1)求点C的坐标和直线l的解析式(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l上;(3)已知直线l:y=x+b经过点B,与y轴交于点E,求△ABE的面积.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.【题目详解】过D点作BE的垂线,垂足为F,∵∠ABC=30°,∠ABE=150°,∴∠CBE=∠ABC+∠ABE=180°.在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,由旋转的性质可知:BD=BC=2,DE=AC=2,BE=AB=4,由DF×BE=BD×DE,即DF×4=2×2,解得:DF=,S△BCD=×BC×DF=×2×=3(cm2).故选C.【题目点拨】本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD的面积确定底和高的值,有一定难度.2、A【解题分析】试题分析:根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.考点:本题考查了平行投影特点点评:解答本题的关键是掌握平行投影的特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.3、B【解题分析】
先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【题目详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.【题目点拨】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.4、C【解题分析】
根据二次根式的性质进行化简即可.【题目详解】8∵a≥1,∴原式=2a2a故选C.【题目点拨】本题主要考查二次根式的性质、化简,关键在于根据已知推出a≥1.5、C【解题分析】试题分析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为.考点:概率的计算6、B【解题分析】
先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【题目详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【题目点拨】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.7、C【解题分析】【分析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=AC•BD=AB•E′M求得E′M的长即可得答案.【题目详解】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值的点,则有PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB=,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选C.【题目点拨】本题考查了轴对称——最短路径问题,涉及到菱形的性质、勾股定理等,确定出点P的位置是解题的关键.8、D【解题分析】
先通分算加法,再算乘法,最后代入求出即可.【题目详解】解:===(x+y)(x-y),当时,原式=4×=12,故选:D.【题目点拨】本题考查分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.9、D【解题分析】分析:本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.解答:解:∵=610千克,=608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.1.∴乙的亩产量比较稳定.故选D.10、B【解题分析】
众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【题目详解】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.二、填空题(每小题3分,共24分)11、5【解题分析】
解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,∴(3+4)=(2+3+4+x),解得:x=5;故答案为512、5【解题分析】
由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S=S,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.【题目详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD(ASA),∴S=S,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=5.故答案为:5.【题目点拨】此题考查全等三角形的判定与性质,正方形的性质,解题关键在于掌握判定定理.13、x<1【解题分析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【题目详解】解:﹣2x>﹣3﹣5,﹣2x>﹣8,x<1,故答案为x<1.【题目点拨】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14、a≤2【解题分析】
根据求一元一次不等式组解集的口诀,即可得到关于a的不等式,解出即可.【题目详解】由题意得a≤2.【题目点拨】本题考查的是解一元一次不等式组,解答本题的关键是熟练掌握求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,小小大大找不到(无解).15、1【解题分析】
由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.【题目详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=5,∵平行四边形ABCD的周长为36,∴BC+CD=18,∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=1;故答案为:1.【题目点拨】本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键.16、1【解题分析】试题解析:∵PC⊥x轴,PD⊥y轴,∴S矩形PCOD=2,S△AOC=S△BOD=,∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=2--=1.17、1【解题分析】
直接根据题意画出直角三角形,进而利用勾股定理得出答案.【题目详解】解:如图所示:由题意可得,在Rt△ACB中,AC=75m,BC=100m,
则AB==1(m),
故答案为:1.【题目点拨】本题考查了勾股定理的应用,正确画出图形是解题的关键.18、【解题分析】
根据二次根式的乘法,可得第二个空的答案;【题目详解】;故答案为:.【题目点拨】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.三、解答题(共66分)19、面积等于36【解题分析】试题分析:利用勾股定理求AC,再利用勾股定理逆定理求∠ACB=90°,分别求的面积.试题解析:∠B=90°,AB=3,BC=4,AC==169,所以∠ACD=90°,.所以面积是36.20、证明见解析.【解题分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.证明:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.“点睛”此题考查了平行四边形的判定与性质,熟练掌握平式子变形的判定与性质是解本题的关键.21、(1)y=x-4.(2)(-4,0).【解题分析】
(1)把点(2,-3)代入解析式即可求出k;(2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.【题目详解】解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=.∴一次函数的表达式为y=x-4.(2)将y=x-4的图像向上平移6个单位长度得y=x+2.当y=0时,x=-4.∴平移后的图像与x轴交点的坐标为(-4,0).【题目点拨】此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.22、探究:证明见解析;应用:10,26【解题分析】
探究:根据平行四边形的性质得到AB∥CD,OB=OD,根据AAS可证明△BOE≌△DOF.应用:根据平行四边形的性质、梯形的面积公式计算即可.【题目详解】探究:如图②.∵四边形ABCD是平行四边形,∴AD∥BC,OD=OB,∴∠ODF=∠OBE,∠E=∠F.在△BOE和△DOF中,∵,∴△BOE≌△DOF(AAS).应用:∵∠ADB=90°,AB=10,AD=6,∴BD1.∵BE=BC,BC=AD=6,∴BE=2.∵AD∥BE,∴BD⊥CE.在Rt△OBE中,OBBD=4,BE=2,∴OE=5,由探究得:△BOE≌△DOF,∴OE=OF=5,∴EF=10,四边形AEBD的面积26.故答案为:10,26.【题目点拨】本题是四边形的综合题,考查的是平行四边形的性质、勾股定理、梯形的面积计算,掌握平行四边形的性质定理是解题的关键.23、(1)见解析;(2);(3).【解题分析】
(1)如图1中,作PE⊥BC于E,PF⊥CD于F.只要证明△PEB≌△PFQ即可解决问题;(2)根据S四边形BCQP=S四边形CEPF即可解决问题;(3)如图2,过P做EF∥AD分别交AB和CD于E、F,易知,由,推出,由,推出,由此即可解决问题.【题目详解】(1)如图1中,作于,于,四边形是正方形,,于,于,,,四边形是矩形,,四边形是正方形,,,,,;(2)如图1中,由(1)可知,四边形是正方形,,,,,,,;(3)如图2,过做分别交和于、,,,,,,,.【题目点拨】本题考查的是四边形综合题,涉及了全等三角形的判定和性质、正方形的性质和判定等知识,正确添加辅助线,灵活运用所学知识是解题的关键.24、(1)BC=;(1)BD=2【解题分析】
(1)在Rt△ABC中利用勾股定理即可求出BC的长;
(1)过点B作BE⊥DC交DC的延长线于点E.根据等边对等角的性质以及平行线的性质得出∠1=∠3,利用角平分线的性质得出AB=BE=3,在Rt△BCE中,根据勾股定理可得EC=1,则ED=4,在Rt△BDE中,利用勾股定理可得BD=2.【题目详解】(1)在Rt△ABC中,∵AC⊥AB,AB=3,AC=1,∴BC=;(1)过点B作BE⊥DC交DC的延长线于点E.∵AC=CD,∴∠1=∠ADC,又∵AD∥BC,∴∠3=∠ADC,∠1=∠1,∴∠1=∠3,又∵AC⊥AB,BE⊥DC,∴AB=BE=3,又由(1)BC=,在Rt△BCE中,由勾股定理可得EC=1;∴ED=1+1=4,在Rt△BDE中,由勾股定理可得BD=2.【题目点拨】本题考查了勾股定理,等腰三角形、平行线、角平分线的性质,掌握各定理是解题的关键.25、(1)详见解析;(1)10+1.【解题分析】
(1)先根据垂直于同一条直线的两直线平行,得AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国智能门锁行业营销创新战略制定与实施研究报告
- 新形势下汽车服务行业快速做大市场规模战略制定与实施研究报告
- 考察学习“百千万工程”、现代农业产业发展工作情况报告
- 2024年自来水市场调查报告
- 2025年中国珠海旅游业行业市场运行态势及投资战略咨询研究报告
- 湖北省武汉市江汉区2023-2024学年化学九年级上学期末试卷
- 跨境财税知识培训课件
- 2025版12333养老保险政策解读与操作流程合同3篇
- 地方政府对中央政策响应差异化的影响因素及机制分析-基于医保支付方式改革的多案例比较
- 二零二五年度房产抵押权抵押权证合同3篇
- 2024-2025学年陕旅版英语五年级上册期末质量检测5(含答案含听力原文无音频)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之20:“7支持-7.3意识+7.4沟通”(雷泽佳编制-2025B0)
- 西京学院《数据挖掘B》2023-2024学年第一学期期末试卷
- 高速公路项目施工安全标准化图集(多图)
- 第一节植物细胞的结构和功能 (3)
- 芜湖市教育高层次人才分层培养实施方案
- 电梯安全防护知识培训PPT课件:正确使用电梯
- 设计风速、覆冰的基准和应用
- 水果深加工项目商业计划书范文参考
- 爱丽丝梦游仙境话剧中英文剧本
- 五年级上册人教版数学脱式计算题五年级上册脱式计算,解方程,应用题
评论
0/150
提交评论