2024届江苏省扬州区值、梅岭中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届江苏省扬州区值、梅岭中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届江苏省扬州区值、梅岭中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届江苏省扬州区值、梅岭中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届江苏省扬州区值、梅岭中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省扬州区值、梅岭中学数学八年级第二学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米2.如图,三个正比例函数的图像分别对应的解析式是:①;②;③,则、、的大小关系是().A. B. C. D.3.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2 B.1,1, C.4,5,6 D.1,,24.一个寻宝游戏的寻宝通道由正方形ABCD的边组成,如图1所示.为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→B B.B→C C.C→D D.D→A5.下列各组数中不能作为直角三角形的三边长的是()A.,, B.6,8,10 C.7,24,25 D.,3,56.甲、乙、丙、丁四位同学在一次数学测验中的平均成绩是90分,而甲、乙、丙三人的平均成绩是88分,下列说法一定正确的是()A.丁同学的成绩比其他三个同学的成绩都好B.四位同学成绩的中位数一定是其中一位同学的成绩C.四位同学成绩的众数一定是90分D.丁同学成绩是96分7.顺次连接一个四边形的各边中点,得到了一个正方形,这个四边形最可能是()A.正方形 B.矩形 C.菱形 D.平行四边形8.如图,AC、BD是四边形ABCD的对角线,若E、F、G、H分别是BD、BC、AC、AD的中点,顺次连接E、F、G、H四点,得到四边形EFGH,则下列结论不正确的是()A.四边形EFGH一定是平行四边形 B.当AB=CD时,四边形EFGH是菱形C.当AC⊥BD时,四边形EFGH是矩形 D.四边形EFGH可能是正方形9.把方程化成(x+m)2=n的形式,则m、n的值是()A.4,13 B.4,19 C.-4,13 D.-4,1910.下列代数式是分式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.12.如图,点E是正方形ABCD边AD的中点,连接CE,过点A作AF⊥CE交CE的延长线于点F,过点D作DG⊥CF交CE于点G,已知AD=2,则线段AF的长是_____.13.如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.14.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的方差是___.15.如图,在平行四边形ABCD中,AB=5cm,BC=7cm,BE平分∠ABC交AD边于点E,则线段DE的长度为________cm.16.关于x的方程有增根,则m的值为_____17.如图,在正方形ABCD的外侧,作等边△ADE,则∠EBD=________.18.如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.三、解答题(共66分)19.(10分)如图,四边形ABCD是矩形,把矩形沿直线BD拆叠,点C落在点E处,连接DE,DE与AD交于点M.(1)证明四边形ABDE是等腰梯形;(2)写出等腰梯形ABDE与矩形ABCD的面积大小关系,并证明你的结论.20.(6分)如图,正比例函数的图象与一次函数的图象交于点,一次函数图象经过点,与轴的交点为,与轴的交点为.(1)求一次函数解析式;(2)求点的坐标.21.(6分)按要求完成下列尺规作图(不写作法,保留作图痕迹)(1)如图①,点A绕某点M旋转后,A的对应点为,求作点M.(2)如图②,点B绕某点N顺时针旋转后,B的对应点为,求作点N.22.(8分)如图1,将线段平移至,使点与点对应,点与点对应,连接、.(1)填空:与的位置关系为,与的位置关系为.(2)如图2,若、为射线上的点,,平分交直线于,且,求的度数.23.(8分)某学校八年级七班学生要去实验基地进行实践活动,估计乘车人数为10人到40人之间,现在欲租甲、乙两家旅行社的车辆,已知甲、乙两家旅行社的服务质量相同,且报价都是每人120元,经过协商,甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位同学的车费,然后给予其他同学八折优惠.(1)若用x表示乘车人数,请用x表示选择甲、乙旅行社的费用y甲与y乙;(2)请你帮助学校选择哪一家旅行社费用合算?24.(8分)已知在菱形ABCD中,对角线AC、BD交于点O,AB=2AO;(1)如图1,求∠BAC的度数;(2)如图2,P为菱形ABCD外一点,连接AP、BP、CP,若∠CPB=120°,求证:CP+BP=AP;(3)如图3,M为菱形ABCD外一点,连接AM、CM、DM,若∠AMD=150°,CM=2,DM=2,求四边形ACDM的面积。25.(10分)有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?26.(10分)现将三张形状、大小完全相同的平行四边形透明纸片分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图①、图②、图③).图②矩形(正方形),分别在图①、图②、图③中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形.(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙.(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.2、C【解题分析】

根据正比例函数图象的性质分析,k>0,经过一、三象限;k<0,经过二、四象限,图像越靠近y轴越大,即可得到答案.【题目详解】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴,,,∵②越靠近y轴,则,∴大小关系为:;故选择:C.【题目点拨】本题考查了正比例函数图象的性质:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越靠近y轴,则|k|越大.3、D【解题分析】

根据勾股定理的逆定理对各选项进行逐一分析即可.【题目详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【题目点拨】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.4、A【解题分析】观察图2得:寻宝者与定位仪器之间的距离先越来越近,到达M后再越来越远,结合图1得:寻宝者的行进路线可能为A→B,故选A.点睛:本题主要考查了动点函数图像,根据图像获取信息是解决本题的关键.5、A【解题分析】

勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.【题目详解】∵()2+()2=7≠()2,∴,,不能作为直角三角形的三边长.故选A.【题目点拨】本题属于基础应用题,只需熟练掌握勾股定理的逆定理,即可完成.6、D【解题分析】

根据算术平均数的定义,中位数的定义以及众数的定义对各选项分析判断利用排除法求解.【题目详解】.解:A、丁同学的成绩为90×4﹣88×3=96(分),而由甲、乙、丙三人的平均成绩是88分无法判断三人的具体成绩,无法比较,此选项错误;B、四位同学成绩的中位数可能是四个数据中的一个,也可能不在所列数据中,此选项错误;C、由于不清楚四位同学的各自成绩,所以不能判断众数,此选项错误;D、丁同学的成绩为90×4﹣88×3=96(分),此选项正确;故选D.【题目点拨】本题考查了算术平均数的定义,中位数的定义,以及众数的定义,是基础题,熟记各概念是解题的关键.7、A【解题分析】

利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【题目详解】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.

∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.

∴EF=EH,EF⊥EH,

∵BD=2EF,AC=2EH,

∴AC=BD,AC⊥BD,

即四边形ABCD满足对角线相等且垂直,

选项A满足题意.

故选:A.【题目点拨】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.8、C【解题分析】

根据三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理判断即可.【题目详解】解:∵E、F分别是BD、BC的中点,∴EF∥CD,EF=CD,∵H、G分别是AD、AC的中点,∴HG∥CD,HG=CD,∴HG∥EF,HG=EF,∴四边形EFGH是平行四边形,A说法正确,不符合题意;∵F、G分别是BC、AC的中点,∴FG=AB,∵AB=CD,∴FG=EF,∴当AB=CD时,四边形EFGH是菱形,B说法正确,不符合题意;当AB⊥BC时,EH⊥EF,∴四边形EFGH是矩形,C说法错误,符合题意;当AB=CD,AB⊥BC时,四边形EFGH是正方形,说法正确,不符合题意;故选:C.【题目点拨】此题考查中点四边形、三角形中位线定理,掌握平行四边形、矩形、菱形、正方形的判定定理是解题的关键.9、C【解题分析】

根据配方的步骤把x2-8x+3=0配方变为(x+m)2=n的形式,即可得答案.【题目详解】x2-8x+3=0移项得:x2-8x=-3等式两边同时加上一次项系数一半的平方,得x2-8x+42=-3+42配方得:(x-4)2=13∴m=-4,n=13.故选C.【题目点拨】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10、D【解题分析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】、、的分母中均不含有字母,因此它们是整式,而不是分式;分母中含有字母,因此是分式.故选:D.【题目点拨】考查分式的定义,掌握分式的定义是判断代数式是不是分式的前提.二、填空题(每小题3分,共24分)11、【解题分析】

试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-112、1【解题分析】

先利用正方形的性质得到∠ADC=90°,CD=AD=1,再利用E点为AD的中点得到AE=DE=,则利用勾股定理可计算出CE=5,然后证明Rt△AEF∽Rt△CED,从而利用相似比可计算出AF的长.【题目详解】∵四边形ABCD为正方形,∴∠ADC=90°,CD=AD=1,∵点E是正方形ABCD边AD的中点,∴AE=DE=,在Rt△CDE中,∵AF⊥CE,∴∠F=90°,∵∠AEF=∠CED,∴Rt△AEF∽Rt△CED,∴,即∴AF=1.故答案为1.【题目点拨】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了相似三角形的判定与性质.13、【解题分析】

如图,过点P作EF∥x轴,交y轴与点E,交AB于点F,则易证△CEP≌△PFD(ASA),∴EP=DF,∵P(1,1),∴BF=DF=1,BD=2,∵BD=2AD,∴BA=3∵点A在直线上,∴点A的坐标为(3,3),∴点D的坐标为(3,2),∴点C的坐标为(0,3),设直线CD的解析式为,则解得:∴直线CD的解析式为,联立可得∴点Q的坐标为.14、1.【解题分析】

先确定出a,b,c后,根据方差的公式计算a,b,c的方差.【题目详解】解:平均数;中位数;众数;,b,c的方差.故答案是:1.【题目点拨】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.15、1【解题分析】

根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度.【题目详解】∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=7cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AE=AB=5cm,∴DE=AD-AE=7-5=1cm故答案为:1.【题目点拨】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.16、-1【解题分析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【题目详解】方程两边都乘(x−3),得2−x−m=2(x−3)∵原方程增根为x=3,∴把x=3代入整式方程,得2−3−m=0,解得m=−1.故答案为:−1.【题目点拨】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17、30°【解题分析】分析:判断△ABE是顶角为150°的等腰三角形,求出∠EBA的度数后即可求解.详解:因为四边形ABCD是正方形,所以AB=AD,∠BAD=90°,∠ABD=45°.因为△ADE是等边三角形,所以AD=AE,∠DAE=60°,所以AB=AE,∠BAE=150°,所以∠EBA=(180°-150°)=15°,所以∠EBD=∠ABD-∠EBA=45°-15°=30°.故答案为30°.点睛:本题考查了正方形和等边三角形的性质,正方形的四边都相等,四个角都是直角,每一条对角线平分一组对角.18、【解题分析】

连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论【题目详解】连接,∵,是等腰直角三角形,∴,∠ABC=90°∵四边形是正方形∴BD=BF,∠DBF=∠ABC=90°,∴∠ABD=∠CBF,在△DAP与△BAP中∴,∴,点运动的路径长度即为点从到的运动路径,为.故答案为:【题目点拨】本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题(共66分)19、(1)答案见解析;(2)等腰梯形ABDE小于矩形ABCD的面积【解题分析】

(1)结合图形证△AMB≌△EMD,再结合图形的折叠关系可得答案.(2)由AE<BD,以及平行线间的距离相等,可得由于以及可得结论.【题目详解】证明:(1)∵四边形ABCD是矩形,∴AD=BE,AB=ED,AD∥BC.∴△ADB≌△DBC≌△EDB,∠EBD=∠DBC,∠ADB=∠EBD.∴DM=BM,AM=EM.∴△AMB≌△EMD.∴AB=DE.AM=EM,∴∠EAM=∠AEM,∵DM=BM,∴∠BDM=∠MBD,又∵∠AME=∠BMD,∴∠EAD=∠MDB,∴AE∥BD.∵AE≠BD,∴四边形ABDE是等腰梯形.(2)∵∵∵AE<BD,∴∴∴等腰梯形ABDE小于矩形ABCD的面积.【题目点拨】本题考查了等腰梯形的判定,直角三角形全等的判定,矩形的性质,翻折变换(折叠问题),掌握等腰梯形的判定,直角三角形全等的判定,以及矩形的性质是解题的关键.20、(1);(2)点的坐标为【解题分析】

(1)将代入中即可求解;(2)联立两函数即可求解.【题目详解】解:(1)将代入中,得:,∴(2)联立,得∴点的坐标为【题目点拨】此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.21、(1)见解析;(2)见解析【解题分析】

(1)连结AA′,作AA′的垂直平分线与AA′的交点为M点;

(2)连结BB′,作BB′的垂直平分线得到BB′的中点,然后以BB′为直径作圆,则圆与BB′的垂直平分线的交点即为N点.【题目详解】解:如图①,点M即为所求;如图②,点N即为所求.①②【题目点拨】考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.关键是熟练掌握线段垂直平分线的作法.22、(1),;(2)120°【解题分析】

(1)根据平移的性质,即可判定;(2)根据平行和角平分线的性质进行等角转换,即可得解.【题目详解】(1)由平移的性质,得,AB=CD∴四边形ABCD为平行四边形∴(2)∵∴∵∴∵平分∴∴∵∴∵∴∴【题目点拨】此题主要考查平移的性质、平行四边形的判定与性质以及角平分线的性质,熟练掌握,即可解题.23、(1)y甲=0.75×120x=90x,y乙=0.8×120(x-1)=96x-96;(2)当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.【解题分析】

(1)设共有x人由题意得:甲旅行社的花费=120×人数×七五折;乙旅行社的花费=120×(人数-1)×八折;

(2)分三种情况:①y甲=y乙时,②y甲>y乙时,③y甲<y乙时,分别列出方程或不等式进行计算即可.【题目详解】(1)设共有x人,则

y甲=0.75×120x=90x,

y乙=0.8×120(x-1)=96x-96;(2)由y甲=y乙得,90x=96x-96,

解得:x=16,

y甲>y乙得,90x>96x-96,

解得:x<16,

y甲<y乙得,90x<96x-96,

解得:x>16,

所以,当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;

当人数正好是16人时,选择甲、乙旅行社一样.【题目点拨】此题考查一元一次不等式和方程的应用,关键是正确理解题意,找出题目中不等关系,再列出不等式.24、(1)∠BAC=60°;(2)见解析;(3).【解题分析】

(1)如图1中,证明△ABC是等边三角形即可解决问题.(2)在PA上截取PH,使得PH=PC,连接CH.证明△PCB≌△HCA(SAS)即可;(3)如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.证明A,N,D,M四点共圆,外接圆的圆心是点C,推出AD=CM=,解直角三角形求出AH即可解决问题.【题目详解】解:(1)如图1中,∵四边形ABCD是菱形,∴AC⊥BD,∠ABD=∠CBD,∴∠AOB=90°,∵AB=2OA,∴∠ABO=30°,∴∠ABC=60°,∵BA=BC,∴△ABC是等边三角形,∴∠BAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论