![2024届河北省故城县八年级数学第二学期期末质量检测试题含解析_第1页](http://file4.renrendoc.com/view10/M03/3F/10/wKhkGWXSPZeARZMnAAGem7eYYrQ430.jpg)
![2024届河北省故城县八年级数学第二学期期末质量检测试题含解析_第2页](http://file4.renrendoc.com/view10/M03/3F/10/wKhkGWXSPZeARZMnAAGem7eYYrQ4302.jpg)
![2024届河北省故城县八年级数学第二学期期末质量检测试题含解析_第3页](http://file4.renrendoc.com/view10/M03/3F/10/wKhkGWXSPZeARZMnAAGem7eYYrQ4303.jpg)
![2024届河北省故城县八年级数学第二学期期末质量检测试题含解析_第4页](http://file4.renrendoc.com/view10/M03/3F/10/wKhkGWXSPZeARZMnAAGem7eYYrQ4304.jpg)
![2024届河北省故城县八年级数学第二学期期末质量检测试题含解析_第5页](http://file4.renrendoc.com/view10/M03/3F/10/wKhkGWXSPZeARZMnAAGem7eYYrQ4305.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省故城县八年级数学第二学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各式一定是二次根式的是()A. B. C. D.2.用换元法解方程时,如果设=y,则原方程可化为()A.y+= B.2y2﹣5y+2=0 C.6y2+5y+2=0 D.3y+=3.将分式方程化为整式方程,方程两边可以同时乘()A.x﹣2 B.x C.2(x﹣2) D.x(x﹣2)4.下列各组线段a、b、c中不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=7,b=24,c=25C.a=40,b=50,c=60 D.a=,b=4,c=55.如图,a,b,c分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是A. B. C. D.6.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于()A.2﹣ B.1 C. D.﹣l7.下列各组数中,能作为直角三角形的三边长的是A.1,2,3 B.1,, C.3,5,5 D.,,8.乒乓球是我国的国球,也是世界上流行的球类体育项目.我国乒乓球名将与其对应身高如下表所示:乒乓球名将刘诗雯邓亚萍白杨丁宁陈梦孙颖莎姚彦身高(cm)160155171173163160175这些乒乓球名将身高的中位数和众数是()A.160,163 B.173,175 C.163,160 D.172,1609.式子的值()A.在2到3之间 B.在3到4之间 C.在4到5之间 D.等于3410.若x、y都是实数,且,则xy的值为A.0 B. C.2 D.不能确定11.已知,,是一次函数图象上不同的两个点,若,则的取值范围是()A. B. C. D.12.在函数中,自变量的取值范围是()A. B. C.且 D.二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=__________.14.某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.15.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.16.命题“两直线平行,同位角相等”的逆命题是.17.若关于x的方程=m无解,则m的值为_____.18.已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数y=-2x-4的图象与反比例函数的图象交于A(1,n),B(m,2).(1)求反比例函数关系式及m的值(2)若x轴正半轴上有一点M,满足ΔMAB的面积为16,求点M的坐标;(3)根据函数图象直接写出关于x的不等式的解集20.(8分)如图,AD是△ABC的高,CE是△ABC的中线.(1)若AD=12,BD=16,求DE;(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.21.(8分)已知,求的值.22.(10分)如图,已知BC∥EF,BC=EF,AF=DC.试证明:AB=DE.23.(10分)己知:如图1,⊙O的半径为2,BC是⊙O的弦,点A是⊙O上的一动点.图1图2(1)当△ABC的面积最大时,请用尺规作图确定点A位置(尺规作图只保留作图痕迹,不需要写作法);(2)如图2,在满足(1)条件下,连接AO并延长交⊙O于点D,连接BD并延长交AC的延长线于点E,若∠BAC=45°,求AC2+CE2的值.24.(10分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.25.(12分)定向越野作为一种新兴的运动项目,深受人们的喜爱.这种定向运动是利用地图和指北针到访地图上所指示的各个点标,以最短时间按序到达所有点标者为胜.下面是我区某校进行定向越野活动中,中年男子组的成绩(单位:分:秒).9:0114:459:4619:2211:2018:4711:4012:3211:5213:4522:2715:0017:3013:2218:3410:4519:2416:2621:3315:3119:5014:2715:5516:0720:4312:1321:4114:5711:3912:4512:5715:3113:2014:5014:579:4112:1314:2712:2512:38例如,用时最少的赵老师的成绩为9:01,表示赵老师的成绩为9分1秒.以下是根据某校进行定向越野活动中,中年男子组的成绩中的数据,绘制的统计图表的一部分.某校中年男子定向越野成绩分段统计表分组/分频数频率9≤x<1140.111≤x<13b0.27513≤x<1590.22515≤x<176d17≤x<1930.07519≤x<2140.121≤x<2330.075合计ac(1)这组数据的极差是____________;(2)上表中的a=____________,b=____________,c=____________,d=____________;(3)补全频数分布直方图.26.如图,的对角线相交于点分别为的中点.求证:.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:直接利用二次根式有意义的条件以及二次根式的定义分析得出答案.详解:A、,根号下是负数,无意义,故此选项错误;B、,一定是二次根式,故此选项正确;C、,根号下有可能是负数,故此选项错误;D、三次根式,故此选项错误;故选:B.点睛:此题主要考查了二次根式的定义,形如的式子叫做二次根式,二次根式有意义的条件是被开方数是非负数..2、D【解题分析】
因为已知设=y,易得=,即可转化为关于y的方程.【题目详解】设=y,则则原方程变形为:3y+=,故选:D.【题目点拨】本题主要考查了解分式方程中的换元法,换元的关键是仔细观察题目,看看可以把哪一部分看作一个整体,发现他们之间的联系,从而成功换元.3、D【解题分析】
找出两个分式的公分母即可【题目详解】分式方程化为整式方程,方程两边可以同时乘x(x﹣2),故选D【题目点拨】本题考查公分母有关知识点,基础知识牢固是解题关键4、C【解题分析】
这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:、因为,所以能组成直角三角形;、因为,所以能组成直角三角形;、因为,所以不能组成直角三角形;、因为,所以能组成直角三角形.故选:C.【题目点拨】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、C【解题分析】
根据图形就可以得到一个相等关系与一个不等关系,就可以判断a,b,c的大小关系.【题目详解】解:依图得3b<2a,
∴a>b,
∵2c=b,
∴b>c,
∴a>b>c
故选C.【题目点拨】本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.6、D【解题分析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故选D.【题目点拨】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.7、B【解题分析】
如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.【题目详解】A.12+22≠32,不能构成直角三角形;B.12+()2=()2,能构成直角三角形;C.32+52≠52,不能构成直角三角形;D.≠+()2,不能构成直角三角形.故选:B【题目点拨】本题考核知识点:勾股定理逆定理.解题关键点:理解勾股定理逆定理.8、C【解题分析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;【题目详解】解:把数据从小到大的顺序排列为:155,1,1,2,171,173,175;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是2,那么由中位数的定义可知,这组数据的中位数是2.故选:C.【题目点拨】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键.9、C【解题分析】分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.详解:∵,∴4<<5,故选C.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.10、C【解题分析】由题意得,2x−1⩾0且1−2x⩾0,解得x⩾且x⩽,∴x=,y=4,∴xy=×4=2.故答案为C.11、D【解题分析】
根据可得出与异号,进而得出,解之即可得出结论.【题目详解】,与异号,,解得:.故选:.【题目点拨】本题考查了一次函数的性质,熟练掌握“当时,随的增大而减小”是解题的关键.12、C【解题分析】
根据分母不能为零,被开方数是非负数,可得答案.【题目详解】解:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选:C.【题目点拨】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题(每题4分,共24分)13、【解题分析】
以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,由圆周角定理的推论得,进而CE=AD=1,由直径所对的圆周角是直角,有勾股定理即可求得AC的长.【题目详解】如图,以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,∵AB=BC=BD=2,∴C,D在⊙B上,∵AB∥CD,∴,∴CE=AD,∵AD=1,∴CE=AD=1,AE=AB+BE=2AB=4,∵AE是⊙B的直径,∴∠ACE=90º,∴AC==,故答案为.【题目点拨】本题借助于圆的模型把三角形的问题转化为圆的性质的问题,再解题过程中需让学生体会这种转化的方法.14、【解题分析】
设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.【题目详解】解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,
根据题意得.故答案为.【题目点拨】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.15、8【解题分析】
解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.16、同位角相等,两直线平行【解题分析】
逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行【题目点拨】本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用17、或.【解题分析】
分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.【题目详解】解:方程两边同时乘以(2x﹣3),得:x+4m=m(2x﹣3),整理得:(2m﹣1)x=7m①当2m﹣1=0时,整式方程无解,m=②当2m﹣1≠0时,x=,x=时,原分式方程无解;即,解得m=故答案为:或.【题目点拨】本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.18、3【解题分析】
将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.【题目详解】把(a,3)代入一次函数解析式y=-2x+9,得3=-2a+9,解得:a=3,故答案为:3.【题目点拨】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.三、解答题(共78分)19、(1)反比例关系式为:,m=-3;(2)点M(2,0);(3)x<-3或0<x<1【解题分析】
(1)把A(1,n),B(m,2)代入y=-2x-4即可求得m、n的值,从而得到A(1,-6),然后利用待定系数法即可即可求得反比例函数的表达式;
(2)设M(m,0),因为△MAB的面积为16,直线AB交x轴于(-2,0),可得|m+2|×8=16,解方程即可;
(3)根据图象,结合A、B的坐标即可求得.【题目详解】解:(1)∵一次函数y=-2x-4的图象过点A(1,n),B(m,2)
∴n=-2-4,2=-2m-4
∴n=-6,m=-3,∴点A(1,-6).把A(1,-6)代入得,k=-6,∴反比例关系式为:;(2)设直线AB交x轴于点N,则N(-2,0),设M(m,0),m>0,当M在x轴正半轴时=|m+2|×8=16∴m=2或-6(不合题意舍去),∴点M(2,0);(3)由图象可知:不等式在<-2x-4的解集是x<-3或0<x<1.故答案为:(1)反比例关系式为:,m=-3;(2)点M(2,0);(3)x<-3或0<x<1【题目点拨】本题考查反比例函数与一次函数的交点问题,三角形的面积等知识,解题的关键是熟练掌握待定系数法解决问题,学会构建方程解决问题.20、(1)DE=10;(2)∠BCE=19°.【解题分析】
(1)根据勾股定理和直角三角形斜边上的中线等于斜边的一半即可得到结论;(2)由DE=DC得到∠DEC=∠DCE,由DE=BE得到∠B=∠EDB,由此根据外角的性质来求∠BCE的度数.【题目详解】(1)∵AD⊥BC,∴∠ADB=90°,∴AB==20,∵CE是中线,∴DE是斜边AB上的中线,∴DE=AB=10;(2)∵DF⊥CF,F是CF的中点,∴DE=DC,∴∠DEC=∠DCE,∴∠EDB=∠DEC+∠DCE=2∠BCE,∵DE=BE,∴∠B=∠EDB,∴∠B=2∠BCE,∴∠AEC=3∠BCE=57°,则∠BCE=19°.【题目点拨】本题考查了勾股定理,也考查了直角三角形斜边上的中线性质,熟练掌握勾股定理是解题的关键.21、【解题分析】
先计算出a+b,b-a以及ab的值,再把所求代数式变形为,然后代值计算即可.【题目详解】解:∵,∴,∴原式=.【题目点拨】本题二次根式的化简求值,通过先计算a+b,b-a以及ab的值,变形所求代数式,从而使计算变得简便.22、证明见解析【解题分析】
首先根据平行线的性质可得∠BCA=∠EFD,再根据AF=DC可得AC=DF,然后可以证明△ABC≌△DEF,再根据全等三角形的性质可得AB=DE.【题目详解】∵BC∥EF(已知),∴∠BCA=∠EFD(两直线平行,内错角相等)∵AF=DC(已知),∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS),∴AB=DE(全等三角形的对应边相等).【题目点拨】全等三角形的判定与性质,以及平行线的性质,关键是掌握证明三角形全等的判定方法:SSS、ASA、SAS、AAS.23、(1)见解析;(1)2.【解题分析】
(1)作BC的垂直平分线交优弧BC于A,则点A满足条件;
(1)利用圆周角定理得到∠ACD=90°,根据圆内接四边形的性质得∠CDE=∠BAC=45°,通过判断△DCE为等腰直角三角形得到CE=CD,然后根据勾股定理得到AC1+CE1=AC1+CD1=AD1.【题目详解】解:(1)如图1,点A为所作;
(1)如图1,连接CD,∵AD为直径,
∴∠ACD=90°,
∵∠CDE=∠BAC=45°,
∴△DCE为等腰直角三角形,
∴CE=CD,
∴AC1+CE1=AC1+CD1=AD1=41=2.【题目点拨】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.24、(1)证明见解析;(2)证明见解析.【解题分析】
(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025砌筑工程劳务承包合同范本
- 2025建材店劳动合同
- 仓库联合经营合同范例
- 个人签订租赁合同范例
- 关于小型施工合同范例
- 专利合作销售合同范本
- 冷库装卸合同范本
- 90代劳动合同范例
- 保障租房合同范例
- 临时用人合同范本
- 《奥特莱斯业态浅析》课件
- 2022年湖南省公务员录用考试《申论》真题(县乡卷)及答案解析
- 国家安全教育课程教学大纲分享
- 养殖场兽医服务合同
- 电气工程及其自动化基础知识单选题100道及答案解析
- HR六大板块+三支柱体系
- 慢性病患者门诊身份管理方案
- 2025年高考英语一轮复习讲义(新高考)第2部分语法第23讲状语从句(练习)(学生版+解析)
- 连铸工职业技能大赛考试题库-上(单选、多选题)
- 2024年全国统一高考数学试卷(新高考Ⅱ)含答案
- 十七个岗位安全操作规程手册
评论
0/150
提交评论