版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省濮阳县区联考数学八年级第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下表是某校12名男子足球队的年龄分布:年龄(岁)13141516频数1254该校男子足球队队员的平均年龄为()A.13 B.14 C.15 D.162.如图,在中,是上一点,,,垂足为,是的中点,若,则的长度为()A.36 B.18 C.9 D.53.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80° B.120° C.100° D.90°4.下列事件为必然事件的是()A.某运动员投篮时连续3次全中 B.抛掷一块石块,石块终将下落C.今天购买一张彩票,中大奖 D.明天我市主城区最高气温为38℃5.在一次统考中,从甲、乙两所中学初二学生中各抽取50名学生进行成绩分析,甲校的平均分和方差分别是82分和245分,乙校的平均分和方差分别是82分和190分,根据抽样可以粗略估计成绩较为整齐的学校是()A.甲校 B.乙校 C.两校一样整齐 D.不好确定哪校更整齐6.已知点,,三点都在反比例函数的图像上,则下列关系正确的是().A. B. C. D.7.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为()A.3 B.2.5 C.2 D.1.58.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形 B.八边形 C.九边形 D.十边形9.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.610.函数的图象如图所示,则关于的不等式的解集是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是____.①第24天的销售量为200件;②第10天销售一件产品的利润是15元;③第12天与第30天这两天的日销售利润相等;④第30天的日销售利润是750元.12.已知为分式方程,有增根,则_____.13.如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=24,BD=10,若点E是BC边的中点,则OE的长是_____.14.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是_____________.15.如图,已知在中,,点是延长线上的一点,,点是上一点,,连接,、分别是、的中点,则__________.16.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=_____,对角线AC的长为_____.17.化简:32-318.如图,正方形ABCD的边长为2,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是_____.三、解答题(共66分)19.(10分)2019年中国北京世界园艺博览会于4月28日晚在北京·延庆隆重开幕,本届世园会主题为“绿色生活、美丽家园”.自开园以来,世园会迎来了世界各国游客进园参观.据统计,仅五一小长假前来世园会打卡的游客就总计约32.7万人次.其中中国馆也是非常受欢迎的场馆.据调查,中国馆5月1日游览人数约为4万人,5月3日游览人数约为9万人,若5月1日到5月3日游客人数的日增长率相同,求中国馆这两天游客人数的日平均增长率是多少?20.(6分)化简求值:,其中x=.21.(6分)甲、乙两个工程队合作完成一项工程,两队合做2天后由乙队单独做1天就完成了全部工程,已知乙队单独做所需的天数是甲队单独做所需天数的1.5倍,求甲、乙两队单独做各需多少天完成该项工程?22.(8分)已知关于x的方程2x2+kx-1=0.(1)求证:方程有两个不相等的实数根.(2)若方程的一个根是-1,求方程的另一个根.23.(8分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.24.(8分)如图,一次函数y=x+1的图象l与x轴、y轴分别交于A、B两点(1)l上有一P点,它的纵坐标为2,求点P的坐标;(2)求A、B两点间的距离AB.25.(10分)某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.(1)这次共调查了多少名学生?扇形图中的、值分别是多少?(2)补全频数分布直方图;(3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:视力0.35~0.650.65~0.950.95~1.251.25~l.55比例根据调查结果估计该校有多少学生在光线较暗的环境下学习?26.(10分)如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AF=DF,①求证:AB=DE;②若AB=3,BF=5,求△BCE的周长.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
根据加权平均数的计算公式进行计算即可.【题目详解】该校男子足球队队员的平均年龄为13×1+14×2+15×5+16×41+2+5+4=15(岁)故选:C.【题目点拨】此题考查加权平均数,解题关键在于掌握运算公式.2、C【解题分析】
根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.【题目详解】∵在△ACD中,∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=18,∴EF=9,故选:C.【题目点拨】本题考查了三角形中位线定理和等腰三角形的性质.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.3、B【解题分析】【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理进行解答即可.【题目详解】∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=180°-120°=60°,由圆周角定理得,∠BOD=2∠A=120°,故选B.【题目点拨】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.4、B【解题分析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.【题目详解】解:A、某运动员投篮时连续3次全中,是随机事件;B、抛掷一块石块,石块终将下落,是必然事件;C、今天购买一张彩票,中大奖,是随机事件;D、明天我市主城区最高气温为38℃,是随机事件;故选择:B.【题目点拨】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【解题分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】∵甲校和乙校的平均数是相等的,甲校的方差大于乙校的方差,∴成绩较为整齐的学校是乙校.故选B.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、B【解题分析】解:∵,∴,,即.故选B.7、C【解题分析】
由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE-AB,求得答案.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE-AB=5-3=2.故选C.【题目点拨】此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.8、C【解题分析】
根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【题目详解】360÷40=9,即这个多边形的边数是9,故选C.【题目点拨】本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.9、C【解题分析】
先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8-x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x的值,进而得出DE的长.【题目详解】解:∵Rt△DC′B由Rt△DBC翻折而成,
∴CD=C′D=AB=8,∠C=∠C′=90°,
设DE=x,则AE=8-x,
∵∠A=∠C′=90°,∠AEB=∠DEC′,
∴∠ABE=∠C′DE,
在Rt△ABE与Rt△C′DE中,
∴Rt△ABE≌Rt△C′DE(ASA),
∴BE=DE=x,
在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x)2=x2,
解得:x=1,
∴DE的长为1.
故选C.【题目点拨】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.10、C【解题分析】
解一元一次不等式ax+b>0(或<0)可以归结为以下两种:(1)从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;(2)从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有点的横坐标所构成的集合。【题目详解】观察图像,可知在x轴的上方所有x的取值,都满足y>0,结合直线过点(-2,0)可知当x>-2时,都有y>0即x>-2时,一元一次不等式kx+b>0.故选:C【题目点拨】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象求解二、填空题(每小题3分,共24分)11、①②④.【解题分析】
图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对①做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,对②做出判断,通过图1求出当0≤t≤24时,产品日销售量y与时间t的函数关系式,分别求出第12天和第30天的销售利润,对③④进行判断,最后综合各个选项得出答案.【题目详解】解:图1反应的是日销售量y与时间t之间的关系图象,过(24,200),因此①是正确的,
由图2可得:z=,当t=10时,z=15,因此②也是正确的,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=kt+b,
把(0,100),(24,200)代入得:,
解得:,
∴y=t+100(0≤t≤24),
当t=12时,y=150,z=-12+25=13,
∴第12天的日销售利润为;150×13=1950(元),第30天的销售利润为:150×5=750元,
因此③不正确,④正确,
故答案为:①②④.【题目点拨】本题考查一次函数的应用,分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.12、【解题分析】
去分母得,根据有增根即可求出k的值.【题目详解】去分母得,,当时,为增根,故答案为:1.【题目点拨】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.13、6.1.【解题分析】
根据菱形的性质:对角线互相垂直,利用勾股定理求出BC,再利用直角三角形斜边的中线的性质OE=BC,即可求出OE的长.【题目详解】∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=12,OD=BD=1,在Rt△BOC中,BC==13,∵点E是BC边的中点,∴OE=BC=6.1,故答案为:6.1.【题目点拨】此题主要考查了菱形的性质、勾股定理的运用以及直角三角形斜边上的中线等于斜边的一半等知识,得出EO=BC是解题关键.14、21.【解题分析】已知这组数据共5个,且中位数为4,所以第三个数是4;又因这组数据的唯一众数是6,可得6应该是4后面的两个数字,而前两个数字都小于4,且都不相等,所以前两个数字最大的时候是3,2,即可得其和为21,所以这组数据可能的最大的和为21.故答案为:21.点睛:主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.15、13【解题分析】
根据题意连接,取的中点,连接,,利用三角形中位线定理得到,,再根据勾股定理即可解答.【题目详解】连接,取的中点,连接,,∵、分别是、的中点,∴OM=BE,ON=AD,∴,,∵、分别是、的中点,的中点,∴OM∥EB,ON∥AD,且,∴∠MON=90°,由勾股定理,.故答案为:13.【题目点拨】此题考查三角形中位线定理,勾股定理,解题关键在于作辅助线.16、120°10【解题分析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AD∥BC,∵E是AB的中点,且DE⊥AB,∴AE=AD,∴sin∠ADE=,∴∠ADE=30°,∴∠DAE=60°,∵AD∥BC,∴∠ABC=180°−60°=120°;连接BD,交AC于点O,在菱形ABCD中,∠DAE=60°,∴∠CAE=30°,AB=10,∴OB=5,根据勾股定理可得:AO==,即AC=.故答案为:120°;.点睛:本题考查了菱形的性质、线段垂直平分线的性质、勾股定理等知识点,熟练掌握菱形的性质是解题的关键.由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.17、-6【解题分析】
根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【题目详解】32故答案为-618、1【解题分析】
阴影部分的面积等于正方形的面积减去和的面积和.而两个三角形等底即为正方形的边长,它们的高的和等于正方形的边长,得出阴影部分的面积正方形面积的一半即可.【题目详解】解:由图知,阴影部分的面积等于正方形的面积减去和的面积.而点到的距离与点到的距离的和等于正方形的边长,即和的面积的和等于正方形的面积的一半,故阴影部分的面积.故答案为:1.【题目点拨】本题考查正方形的性质,正方形的面积,三角形的面积公式灵活运用,注意图形的特点.三、解答题(共66分)19、50%.【解题分析】
设中国馆这两天游客人数的日平均增长率为x,根据中国馆5月1日游览人数约为4万人,5月3日游览人数约为9万人,若5月1日到5月3日游客人数的日增长率相同,列出方程即可.【题目详解】解:设中国馆这两天游客人数的日平均增长率为x,由题意得:解得,(舍去)答:中国馆这两天游客人数的日平均增长率为50%.【题目点拨】此题考查一元二次方程的应用,解题关键在于列出方程.20、【解题分析】
首先按照乘法分配律将原式变形,然后根据分式的基本性质进行约分,再去括号,合并同类项即可进行化简,然后将x的值代入化简后的式子中即可求解.【题目详解】原式=当时,原式.【题目点拨】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.21、甲队单独歐需4天完成该项工程,乙队单独做需6天完成该项工程【解题分析】
设甲队单独做需x天完成该项工程,则乙队单独做需1.5x天完成该项工程,根据乙一天的工作量+甲乙合作2天的工作量=1列出方程解答即可.【题目详解】解:设甲队单独做需天完成该项工程,则乙队单独做需天完成该项工程,由题意得解得:经检验是原分式方程的解答:甲队单独歐需4天完成该项工程,乙队单独做需6天完成该项工程【题目点拨】此题考查分式方程的应用,解题关键在于列出方程.22、(1)证明见解析;(2).【解题分析】
(1)计算得到根的判别式大于0,即可证明方程有两个不相等的实数根;(2)利用根与系数的关系可直接求出方程的另一个根.【题目详解】解:(1)∵△=k2+8>0,∴不论k取何值,该方程都有两个不相等的实数根;(2)设方程的另一个根为x1,则,解得:,∴方程的另一个根为.【题目点拨】本题是对根的判别式和根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23、(1)如图所示,DF即为所求,见解析;(2)见解析.【解题分析】
(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;(2)根据角平分线的性质解答即可.【题目详解】(1)如图所示,DF即为所求:(2)∵△ABC中,∠A=60°,∠C=40°,∴∠ABC=80°,∵DE垂直平分BC,∴BD=DC,∴∠DBC=∠C=40°,∴∠ABD=∠DBC=40°,即BD是∠ABC的平分线,∵DF⊥AB,DE⊥BC,∴DF=DE,即点D到BA,BC的距离相等.【题目点拨】此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.24、(1)(,1);(1)1.【解题分析】
(1)把y=1代入函数解析式,求出x即可;(1)求出A、B的坐标,再根据勾股定理求出即可.【题目详解】(1)把y=1代入y=x+1得:1=x+1,解得:x=,所以点P的坐标是(,1);(1)y=x+1,当x=0时,y=1,当y=0时,0=x+1,解得:x=-,即A(-,0),B(0,1),即OA=,OB=1,所以A、B两点间的距离AB==1.【题目点拨】本题考查了一次函数的图象和性质、一次函数图象上点的坐标特征等知识点,能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智慧社区车位共享管理服务合同范本3篇
- 2024跨境教育服务合作合同
- 2025年度住宅小区车位租赁押金退还及违约责任合同4篇
- 2025年度校园窗帘设计与施工一体化服务合同3篇
- 2025年度物流金融承运商合作协议范本8篇
- 2025年度特种物品储藏安全管理合同4篇
- 2025年度工业遗产保护与拆迁补偿协议3篇
- 2025年度智慧农业监测系统采购合同4篇
- 2024版门面精装修产权转让协议
- 2025年员工辞退后债权债务处理协议3篇
- 2024版个人私有房屋购买合同
- 2025年山东光明电力服务公司招聘笔试参考题库含答案解析
- 2024爆炸物运输安全保障协议版B版
- 《神经发展障碍 儿童社交沟通障碍康复规范》
- 2025年中建六局二级子企业总经理岗位公开招聘高频重点提升(共500题)附带答案详解
- 2024年5月江苏省事业单位招聘考试【综合知识与能力素质】真题及答案解析(管理类和其他类)
- 注浆工安全技术措施
- 《食品与食品》课件
- 2024年世界职业院校技能大赛“食品安全与质量检测组”参考试题库(含答案)
- 读书分享会《白夜行》
- 2023上海高考英语词汇手册单词背诵默写表格(复习必背)
评论
0/150
提交评论