北京市延庆区第二区2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第1页
北京市延庆区第二区2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第2页
北京市延庆区第二区2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第3页
北京市延庆区第二区2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第4页
北京市延庆区第二区2024届数学八年级第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市延庆区第二区2024届数学八年级第二学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣) D.(﹣,)2.如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.3.已知一个多边形的内角和是,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形4.用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A. B.C. D.5.如果三个数a、b、c的中位数与众数都是5,平均数是4,那么b的值为()A.2 B.4 C.5 D.5或26.若是完全平方式,则符合条件的k的值是()A.±3 B.±9 C.-9 D.97.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm8.若在实数范围内有意义,则x的取值范围()A.x≥2 B.x≤2C.x>2 D.x<29.下列函数关系式:①y=-2x,②y=−,③y=-2x2,④y=2,⑤y=2x-1.其中是一次函数的是()A.①⑤ B.①④⑤ C.②⑤ D.②④⑤10.下列特征中,平行四边形不一定具有的是()A.邻角互补 B.对角互补 C.对角相等 D.内角和为360°二、填空题(每小题3分,共24分)11.函数为任意实数)的图象必经过定点,则该点坐标为____.12.如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.13.一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x枚,白棋有y枚.如果从盒中随机取出一枚为黑棋的概率是,那么y=___.(请用含x的式子表示y)14.若反比例函数的图象经过点,则的图像在_______象限.15.如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.16.当________时,分式的值为0.17.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.18.如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是_____.三、解答题(共66分)19.(10分)全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?20.(6分)嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.(1)求5张白纸粘合后的长度;(2)设x张白纸粘合后总长为ycm.写出y与x之间的函数关系式;(3)求当x=20时的y值,并说明它在题目中的实际意义.21.(6分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(2,4),B(4,0),分别将点A、B的横坐标、纵坐标都乘以1.5,得相应的点A'、B'的坐标。(1)画出OA'B':(2)△OA'B'与△AOB______位似图形:(填“是”或“不是”)(3)若线段AB上有一点,按上述变换后对应的A'B'上点的坐标是______.22.(8分)综合与实践如图,为等腰直角三角形,,点为斜边的中点,是直角三角形,.保持不动,将沿射线向左平移,平移过程中点始终在射线上,且保持直线于点,直线于点.(1)如图1,当点与点重合时,与的数量关系是__________.(2)如图2,当点在线段上时,猜想与有怎样的数量关系与位置关系,并对你的猜想结果给予证明;(3)如图3,当点在的延长线上时,连接,若,则的长为__________.23.(8分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)24.(8分)某书店以每本21元的价格购进一批图书,若每本图书售价a元,则每周可卖出(350﹣10a)件,但物价局限定每本图书的利润率不得超过20%,该书店计划“五一”黄金周要盈利400元.问需要购进图书多少本?25.(10分)“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小.26.(10分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t为多少时,四边形PQCD成为平行四边形?(3)当t为多少时,四边形PQCD为等腰梯形?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】试题解析:∵三角板绕原点O顺时针旋转75°,

∴旋转后OA与y轴夹角为45°,

∵OA=2,

∴OA′=2,

∴点A′的横坐标为2×=,

纵坐标为-2×=-,

所以,点A′的坐标为(,-)故选C.2、B【解题分析】

首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【题目详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.【题目点拨】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<“>”要用空心圆点表示.3、B【解题分析】

根据多边形内角和定理,n边形的内角和公式为,因此,由得n=1.故选B.4、A【解题分析】

根据配方法的步骤逐项分析即可.【题目详解】∵x2+px+q=0,∴x2+px=-q,∴x2+px+=-q+,∴.故选A.【题目点拨】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.5、D【解题分析】

该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【题目详解】解:设另一个数为x,则5+5+x=4×3,解得x=1,即b=5或1.故选D.【题目点拨】本题主要考查众数、中位数、平均数,用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6、D【解题分析】

根据是一个完全平方式,可得,据此求解.【题目详解】解:∵是一个完全平方式∴∴故选:D【题目点拨】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.7、D【解题分析】

根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【题目点拨】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.8、A【解题分析】

二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【题目详解】∵在实数范围内有意义,∴x−2≥0,解得x≥2.故答案选A.【题目点拨】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.9、A【解题分析】

根据一次函数的定义条件进行逐一分析即可.【题目详解】解:①y=-2x是一次函数;②y=−自变量次数不为1,故不是一次函数;③y=-2x2自变量次数不为1,故不是一次函数;④y=2是常函数;⑤y=2x-1是一次函数.所以一次函数是①⑤.故选:A.【题目点拨】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.10、B【解题分析】

根据平行四边形的性质得到,平行四边形邻角互补,对角相等,内角和360°,而对角却不一定互补.【题目详解】解:根据平行四边形性质可知:A、C、D均是平行四边形的性质,只有B不是.故选B.【题目点拨】本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.二、填空题(每小题3分,共24分)11、(1,2)【解题分析】

先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.【题目详解】解:函数可化为,当,即时,,该定点坐标为.故答案为:.【题目点拨】本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.12、2或9−3.【解题分析】

分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.【题目详解】当B′在横对称轴上,此时AE=EB=3,如图1所示,由折叠可得△ABF≌△AB′F∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,∴∠B′MF=∠B′FM,∴B′M=B′F,∵EB′∥BF,且E为AB中点,∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,∴EM=BF,设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,在Rt△AEB′中,根据勾股定理得:3+(x)=6,解得:x=2,即BF=2;当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:设BF=x,B′N=y,则有FN=4−x,在Rt△FNB′中,根据勾股定理得:y+(4−x)=x,∵∠AB′F=90°,∴∠AB′M+∠NB′F=90°,∵∠B′FN+∠NB′F=90°,∴∠B′FN=∠AB′M,∵∠AMB′=∠B′NF=90°,∴△AMB′∽△B′NF,∴,即,∴y=x,∴(x)+(4−x)=x,解得x=9+3,x=9−3,∵9+3>4,舍去,∴x=9−3所以BF的长为2或9−3,故答案为:2或9−3.【题目点拨】此题考查翻折变换(折叠问题),解题关键在于作辅助线13、3x.【解题分析】

根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.【题目详解】∵从盒中随机取出一枚为黑棋的概率是,∴,整理,得:y=3x,故答案为:3x.【题目点拨】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、二、四【解题分析】

用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.【题目详解】解:将点代入得,解得:因为k<0,所以的图像在二、四象限.故答案为:二、四【题目点拨】本题考查了反比例函数的性质,,当k>0时,图像在一、三象限,当k<0时,图像在二、四象限,正确掌握该性质是解题的关键.15、1【解题分析】

根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【题目详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5∴DF=DE﹣EF=1,故答案为:1.【题目点拨】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16、5【解题分析】

根据分式值为零的条件可得x-5=0且2x+1≠0,再解即可【题目详解】由题意得:x−5=0且2x+1≠0,解得:x=5,故答案为:5【题目点拨】此题考查分式的值为零的条件,难度不大17、.【解题分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.解:画树状图得:∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,∴恰好2名女生得到电影票的概率是:=.故答案为:.18、1-1【解题分析】如图,过P作PE⊥CD,PF⊥BC,∵正方形ABCD的边长是1,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=1,∴∠PCE=30°∴PF=PB•sin60°=1×=,PE=PC•sin30°=2,S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×1×+×2×1﹣×1×1=1+1﹣8=1﹣1.故答案为1﹣1.点睛:本题考查正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.三、解答题(共66分)19、(1)40;100;15;(2)225万人;(3).【解题分析】试题分析:(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.试题解析:解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C组的频数n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比是:×100%=15%;(2)750×=225(万人);(3)随机抽查一人,则此人关注C组话题的概率是=.故答案为40,100,15,.考点:频数(率)分布表;用样本估计总体;扇形统计图;概率公式.20、(1)1cm;(2)y=17x+2;(2)242cm【解题分析】

(1)根据图形可得5张白纸的长减去粘合部分的长度即可;(2)根据题意x张白纸的长减去粘合部分的长度就是y的值;(2)把x=20代入(2)得到的函数解析式即可求解.【题目详解】解:(1)由题意得,20×5-2×(5-1)=1.则5张白纸粘合后的长度是1cm;(2)y=20x-2(x-1),即y=17x+2.(2)当x=20时,y=17×20+2=242.答:实际意义是:20张白纸粘合后的长度是242cm.【题目点拨】本题考查了函数的关系式,正确理解纸条的长度等于白纸的长度减去粘合部分的长度是关键.21、(1)见解析;(2)是;(3).【解题分析】

(1)直接利用将点A、B的横坐标、纵坐标都乘以1.5,得相应的点A'、B'的坐标,即可得出答案;(2)利用位似图形的定义得出答案;(3)利用位似图形的性质即可得出对应点坐标.【题目详解】解:(1)根据题意可知A'坐标为(21.5,41.5),即A'(3,6),同理B'(6,0),如图所示:△OA'B',即为所求;(2)如(1)中图形所示,OA和OA'、OB和OB'在同一直线上,AB平行于A'B',所以△OA'B'与△AOB是位似图形;故答案为:是;(3)若线段AB上有一点D(x0,y0),按上述变换后对应的A'B'上点的坐标是:(1.5x0,1.5y0),故答案为:(1.5x0,1.5y0).【题目点拨】此题主要考查了位似变换以及位似图形的性质,正确得出对应点位置是解题关键.22、(1);(2),,见解析;(3)【解题分析】

(1)根据等腰直角三角形的性质证明OA=OC,∠A=∠C,然后证明≌即可得到OE=OF;(2)根据等腰直角三角形的性质证明OA=OB,∠A=∠OBF,利用矩形的判定证明PEBF是矩形,从而得到BF=AE,于是可证明≌,即可得到,;(3)同(2)类似,证明,,然后根据勾股定理即可求出EF的长.【题目详解】解:(1)=,理由如下:∵为等腰直角三角形,,点为斜边的中点,∴OA=OC,∠A=∠C,∵,,∴,∴≌,∴.故答案是:.(2),,理由如下:如图2,连接OB,∵为等腰直角三角形,点为斜边的中点,∴OA=OB,∠A=∠OBF=,∠AOB=,∵,∴∠A=∠APE=,∴AE=PE,∵,,,∴PEBF是矩形,∴BF=PE,∴BF=AE,在和中,,∴≌,∴,,∴,∴.故答案是:,.(3)如图3,连接EF、OB,∵为等腰直角三角形,点为斜边的中点,∴OA=OB,∠BAO=∠OBC=,∠AOB=,∴∠EAO=∠OBF=,∵,∴∠APE=∠PAE=,∴AE=PE,∵,,,∴PEBF是矩形,∴BF=PE,∴BF=AE,在和中,,∴≌,∴,,∴,∴.∴是等腰直角三角形,∵OE=1,∴EF=.故答案是:.【题目点拨】本题考查了矩形的判定和性质,利用等腰直角三角形的性质得到边角关系从而证明三角形全等是解题关键.23、点C到AB的距离约为14cm.【解题分析】

通过勾股定理的逆定理来判断三角形ABC的形状,从而再利用三角形ABC的面积反求点C到AB的距离即可.【题目详解】解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离.在△ABC中,∵,,,∴,,∴,∴△ABC为直角三角形,即∠ACB=90°.……∵,∴,即,∴CE=14.4≈14.答:点C到AB的距离约为14cm.【题目点拨】本题的解题关键是掌握勾股定理的逆定理,能通过三角形面积反求对应的边长.24、需要购进图书2本.【解题分析】

根据总利润=每本利润×销售数量,可得出关于a的一元二次方程,解之可得出a的值,结合利润率不得超过20%可确定a值,再将其代入350﹣10a中即可求出结论.【题目详解】解:依题意,得:(a﹣21)(350﹣10a)=400,整理,得:a2﹣56a+775=0,解得:a1=25,a2=1.∵21×(1+20%)=25.2,∴a2=1不合题意,舍去,∴350﹣10a=350﹣10×25=2.答:需要购进图书2本.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25、(1)60;(2)图形见解析,“基本了解”部分所对应扇形的圆心角的大小为90°.【解题分析】

(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数;

(2)由(1)可求得了解的人数,继而补全折线统计图;求得扇形统计图中“基本了解”部分所对应扇形的圆心角;【题目详解】(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);“了解”的人数为:(人);补全统计图,如图所示:扇形统计图中“基本了解”部分所对应扇形的圆心角为:26、(1)18cm(2)当t=125秒时四边形PQCD为平行四边形(3)当t=245时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论