![黄山市2024届数学八下期末联考试题含解析_第1页](http://file4.renrendoc.com/view12/M05/20/05/wKhkGWXQ4EOAFhE_AAJ2PScoJz8847.jpg)
![黄山市2024届数学八下期末联考试题含解析_第2页](http://file4.renrendoc.com/view12/M05/20/05/wKhkGWXQ4EOAFhE_AAJ2PScoJz88472.jpg)
![黄山市2024届数学八下期末联考试题含解析_第3页](http://file4.renrendoc.com/view12/M05/20/05/wKhkGWXQ4EOAFhE_AAJ2PScoJz88473.jpg)
![黄山市2024届数学八下期末联考试题含解析_第4页](http://file4.renrendoc.com/view12/M05/20/05/wKhkGWXQ4EOAFhE_AAJ2PScoJz88474.jpg)
![黄山市2024届数学八下期末联考试题含解析_第5页](http://file4.renrendoc.com/view12/M05/20/05/wKhkGWXQ4EOAFhE_AAJ2PScoJz88475.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黄山市2024届数学八下期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个 B.2个 C.3个 D.4个2.某型号的汽车在路面上的制动距离s=,其中变量是(
)A.sv2 B.s C.v D.sv3.由线段a,b,c组成的三角形不是直角三角形的是()A.a=3,b=4,c=5 B.a=12,b=13,c=5C.a=15,b=8,c=17 D.a=13,b=14,c=154.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉.某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为()A. B. C. D.5.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是()A.100° B.120° C.130° D.150°6.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD7.如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.30° B.45° C.60° D.90°8.如图,矩形ABCD中,AC与BD交于点O,若,,则对角线AC的长为()A.5 B.7.5 C.10 D.159.在中,斜边,则A.10 B.20 C.50 D.10010.计算的结果是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知菱形ABCD的两条对角线长分别为12和16,则这个菱形ABCD的面积S=_____.12.将正比例函数国象向上平移个单位。则平移后所得图图像的解析式是_____.13.若关于x的分式方程有增根,则m的值为_______.14.如图,将一块边长为12cm正方形纸片ABCD的顶点A折叠至DC边上的E点,使DE=5,折痕为PQ,则PQ的长为_________cm.15.若关于的方程有增根,则的值为________.16.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_____个正方形.17.如图,已知一次函数与y=2x+m的图象相交于,则关于的不等式的解集是__.18.若方程+2=的解是正数,则m的取值范围是___.三、解答题(共66分)19.(10分)如图,在▱ABCD中,E是CD的中点,连接AE并延长交BC的延长线于点F.(1)求证:AE=FE;(2)若AB=2BC,∠F=35∘,求∠DAE20.(6分)如图,中,且是的中点(1)求证:四边形是平行四边形。(2)求证:四边形是菱形。(3)如果时,求四边形ADBE的面积(4)当度时,四边形是正方形(不证明)21.(6分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.22.(8分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.23.(8分)王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平行四边形ABCD中,
,求证:平行四边形ABCD是
.(1)在方框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:24.(8分)解不等式组:请结合题意填空,完成本题解答:(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.25.(10分)小明通过试验发现;将一个矩形可以分别成四个全等的矩形,三个全等的矩形,二个全等的矩形(如上图),于是他对含的直角三角形进行分别研究,发现可以分割成四个全等的三角形,三个全等的三角形.(1)请你在图1,图2依次画出分割线,并简要说明画法;(2)小明继续想分割成两个全等的三角形,发现比较困难.你能把这个直角三角形分割成两个全等的三角形吗?若能,画出分割线;若不能,请说明理由.(注:备用图不够用可以另外画)26.(10分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
解:①小明从家出发乘上公交车的时间为7-(1200-400)÷400=5分钟,①正确;
②公交车的速度为(3200-1200)÷(12-7)=400米/分钟,②正确;
③小明下公交车后跑向学校的速度为(3500-3200)÷3=100米/分钟,③正确;
④上公交车的时间为12-5=7分钟,跑步的时间为15-12=3分钟,因为3<4,小明上课没有迟到,④正确;
故选D.2、D【解题分析】
根据变量是可以变化的量解答即可.【题目详解】解:∵制动距离S=,∴S随着V的变化而变化,
∴变量是S、V.
故选:D.【题目点拨】本题考查常量与变量,是函数部分基础知识,常量是不可变化的常数,变量是可以变化的,一般用字母表示.3、D【解题分析】
根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【题目详解】A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选D.【题目点拨】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4、C【解题分析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可【题目详解】根据已知条件得下半身长是160×0.6=96cm设选的高跟鞋的高度为xcm,有解得x≈7.5经检验x≈7.5是原方程的解故选C【题目点拨】本题考查分式方程的应用,能够读懂题意列出方程是本题关键5、C【解题分析】
根据三角形中位线定理得到PE=AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.【题目详解】解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,
∴PE=AD,PF=BC,
∵AD=BC,
∴PE=PF,
∴∠PFE=∠PEF=25°,
∴∠EPF=130°,
故选:C.【题目点拨】本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.6、D【解题分析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.7、A【解题分析】
根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=30°,再根据旋转的定义可得旋转角的度数.【题目详解】解:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵线段AE绕点A逆时针旋转后与线段AF重合,
∴AE=AF,
在Rt△ABE和Rt△ADF中,,
∴Rt△ABE≌Rt△ADF(HL),
∴∠DAF=∠BAE,
∵∠BAE=30°,
∴∠DAF=30°,
∴∠EAF=90°-∠BAE-∠DAF=90°-30°-30°=30°,
∴旋转角为30°.
故选:A.【题目点拨】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE和Rt△ADF全等是解题的关键,也是本题的难点.8、C【解题分析】分析:根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=5,易求AC的长.详解:∵四边形ABCD是矩形,∴AC=BD.∵AO=AC,BO=BD,∴AO=BO.又∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2AO=1.故选C.点睛:本题考查的是矩形的性质以及等边三角形的判定和性质,熟记矩形的各种性质是解题的关键.9、D【解题分析】
根据勾股定理计算即可.【题目详解】在中,,,故选:D.【题目点拨】本题考查勾股定理,解题的关键是记住在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10、A【解题分析】
根据合并同类二次根式即可.【题目详解】解:故答案选:A【题目点拨】本题考查了二次根式的加减运算,掌握合并同类二次根式是解题的关键.二、填空题(每小题3分,共24分)11、1.【解题分析】
根据菱形的性质,菱形的面积=对角线乘积的一半.【题目详解】解:菱形的面积是:.故答案为1.【题目点拨】本题考核知识点:菱形面积.解题关键点:记住根据对角线求菱形面积的公式.12、y=-1x+1【解题分析】
根据一次函数图象平移的性质即可得出结论.【题目详解】解:正比例函数y=-1x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-1x+1.
故答案为:y=-1x+1.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.13、1【解题分析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.【题目详解】解:方程两边都乘,得∵原方程有增根,∴最简公分母,解得,当时,故m的值是1,故答案为1【题目点拨】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14、13【解题分析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.【题目详解】过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴PQ=AE=故答案是:13.【题目点拨】本题主要考查正方形中的折叠问题,正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.15、;【解题分析】
先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.【题目详解】去分母得:2x+1-x-2=m解得:x=m+1∵分式方程有增根∴x=-2∴m+1=-2解得:m=-1故答案为;-1.【题目点拨】本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.16、1【解题分析】
观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)个正方形从而得到答案.【题目详解】解:∵第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…∴第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1),∴第4幅图中有12+22+32+42=1个正方形.故答案为1.【题目点拨】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.17、x>-1【解题分析】
观察图象,找出直线y=-x+2在直线y=2x+m的下方时对应的x的取值范围即可.【题目详解】从图象可以看出,当时,直线y=-x+2在直线y=2x+m的下方,所以的解集为:x>-1,故答案为:.【题目点拨】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值是解答本题的关键.18、m<3且m≠2.【解题分析】
分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m的范围即可.【题目详解】去分母得:m+2(x﹣1)=x+1,解得:x=3﹣m,由分式方程的解为正数,得到3﹣m>0,且3﹣m≠1,解得:m<3且m≠2,故答案为:m<3且m≠2.【题目点拨】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.三、解答题(共66分)19、(1)详见解析;(2)35°.【解题分析】
(1)欲证明AE=FE,只要证明△ADE≌△FCE(AAS)即可.(2)根据∠DAE=∠BAD-∠FAB,只要求出∠BAD,∠FAB即可.【题目详解】解:(1)证明:∵四边形ABCD是平行四边形,E是CD的中点,∴AD//CF,DE=CE,∴∠DAE=∠CFE,∠D=∠ECF,DE=CE,∴ΔADE≌ΔFCE(AAS),∴AE=FE.(2)∵四边形ABCD是平行四边形,∴AD=BC,由(1)的结论知AD=FC,∴BF=2BC,∵AB=2BC,∴AB=FB,∴∠FAB=∠F=∴∠B=180∴∠BAD=180°−∠B=70°,∴∠DAE=∠BAD−∠FAB=70°−35°=35°.【题目点拨】此题考查平行四边形的性质,全等三角形的判定与性质,解题关键在于证明△ADE≌△FCE.20、(1)见解析;(2)见解析;(3)24;(4)45.【解题分析】
(1)推出CE=BD,CE∥BD,可证四边形是平行四边形;(2)求出BDF=AE,BD∥AE,得出平行四边形ADBE,根据DE∥BC,∠ABC=90°推出DE⊥AB,根据菱形的判定推出即可;(3)由四边形BDEC是平行四边形,可得DE=BC=6,然后根据菱形的面积公式求解即可;(4)当45度时,可证△ABC是等腰直角三角形,从而AB=BC=DE,可证四边形是正方形.【题目详解】(1)证明:∵E是AC的中点,∴CE=AE=AC,∵DB=AC,∵BD=CE,∵BD∥AC,∴BD∥CE,∴四边形BDEC是平行四边形,∴DE∥BC.(2)证明:∵DE∥BC,∠ABC=90°,∴DE⊥AB,∵AE=AC,DB=AC,BD∥AC,∴BD=AE,BD∥AE,∴四边形ADBE是平行四边形,∴平行四边形ADBE是菱形;(3)∵四边形BDEC是平行四边形,∴DE=BC=6.∵四边形ADBE是菱形,∴四边形ADBE面积=;(4)当45度时,四边形是正方形.∵45,∴△ABC是等腰直角三角形,∴AB=BC=DE,∵四边形ADBE是菱形,∴四边形是正方形.【题目点拨】本题考查了平行四边形的性质和判定,菱形的判定与性质,以及正方形的判定等知识点,注意:有一组对边平行且相等的四边形是平行四边形,对角线互相垂直的平行四边形是菱形,有一个角是直角的菱形是正方形.21、(1)见解析;(2)①7;②1.【解题分析】
(1)根据平行四边形的性质得出CF平行ED,再根据三角形的判定方法判定△CFG≌△EDG,从而得出FG=CG,根据平行四边形的判定定理,即可判断四边形CEDF为平行四边形.(2)①过A作AM⊥BC于M,根据直角三角形边角关系和平行四边形的性质得出DE=BM,根据三角形全等的判定方法判断△MBA≌△EDC,从而得出∠CED=∠AMB=90°,根据矩形的判定方法,即可证明四边形CEDF是矩形.②根据题意和等边三角形的性质可以判断出CE=DE,再根据菱形的判定方法,即可判断出四边形CEDF是菱形.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=1时,四边形CEDF是菱形,理由是:∵AD=10,AE=1,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:1.【题目点拨】本题考查了平行四边形、矩形、菱形的判定方法,平行四边形的性质和三角形全等的判定和性质,解决本题的关键是正确理解题意,能够熟练掌握平行四边形、矩形、菱形的判定方法,找到各个量之间存在的关系.22、小路的宽为2米.【解题分析】
根据“小路与观赏亭的面积之和占草坪面积的”,建立方程求解即可得出结论.【题目详解】设小路的宽为x米,由题意得,(5x)2+(40+50)x﹣2×x×5x=×40×50解得,x=2或x=﹣8(不合题意,舍去)答:小路的宽为2米.【题目点拨】考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.23、(1)AC=BD,矩形;(2)证明详见解析.【解题分析】
(1)根据对角线相等的平行四边形是矩形,可得答案;(2)根据全等三角形的判定与性质,可得∠ADC与∠BCD的关系,根据平行四边形的邻角互补,可得∠ADC的度数,根据矩形的判定,可得答案.【题目详解】(1)解:在平行四边形ABCD中,AC=BD,求证:平行四边形ABCD是矩形;(2)证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=BC.在△ADC和△BCD中,∵AC=BD,AD=BC,CD=DC,∴△ADC≌△BCD.∴∠ADC=∠BCD.又∵AD∥CB,∴∠ADC+∠BCD=180°.∴∠ADC=∠BCD=90°.∴平行四边形ABCD是矩形.【题目点拨】本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湘教版地理七年级上册《第三节 影响气候的主要因素》听课评课记录2
- 苏科版数学七年级上册《有理数的减法法则》听评课记录2
- 现场管理承包协议书
- 生活指南版权使用合同(2篇)
- 鲁人版道德与法治九年级上册2.2 做大蛋糕 分好蛋糕 听课评课记录
- 听评课一年级记录怎么写
- 吉林省八年级数学下册17函数及其图象17.4反比例函数17.4.1反比例函数听评课记录新版华东师大版
- 苏科版九年级数学听评课记录:第52讲 用待定系数法求二次函数的解析式
- 五年级数学上册听评课记录
- 沪科版数学七年级下册10.2《平行线的判定》听评课记录3
- 小学六年级数学上册《简便计算》练习题(310题-附答案)
- 2024年河南省《辅警招聘考试必刷500题》考试题库及答案【全优】
- -情景交际-中考英语复习考点
- 安全隐患报告和举报奖励制度
- 地理标志培训课件
- 2023行政主管年终工作报告五篇
- 2024年中国养老产业商学研究报告-银发经济专题
- 公园卫生保洁考核表
- 培训如何上好一堂课
- 高教版2023年中职教科书《语文》(基础模块)下册教案全册
- 2024医疗销售年度计划
评论
0/150
提交评论