版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省大兴安岭松岭区古源中学八年级数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+ C.12或7+ D.以上都不对2.若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.63.下列各式一定是二次根式的是()A. B. C. D.4.下列说法中,正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线相等的四边形是矩形C.有一组邻边相等的矩形是正方形 D.对角线互相垂直的四边形是菱形5.在反比例函数y=2-kx的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1>y2,则k()A.k≥2 B.k>2 C.k≤2 D.k<26.若分式有意义,则实数的取值范围是()A.x=2 B.x=-2 C.x≠2 D.x≠-27.在一次学生田径运动会上.参加男子跳高的15名运动员的成绩如下表所示:成绩(m)1.501.601.651.701.751.80人数124332这些运动员跳高成绩的中位数和众数是()A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,48.打折前购买A商品40件与购买B商品30件所花的钱一样多,商家打折促销,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,则打折前A商品和B商品每件的价格分别为()A.75元,100元 B.120元,160元C.150元,200元 D.180元,240元9.用反证法证明“在中,,则是锐角”,应先假设()A.在中,一定是直角 B.在中,是直角或钝角C.在中,是钝角 D.在中,可能是锐角10.已知三角形三边长为a,b,c,如果a-6+|b﹣8|+(c﹣10)2=0,则△ABC是()A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形 D.不是直角三角形二、填空题(每小题3分,共24分)11.关于的方程有实数根,则的取值范围是_________.12.如果一组数据a,a,…a的平均数是2,那么新数据3a,3a,…3a的平均数是______.13.计算的结果是.14.已知,是关于的方程的两根,且满足,那么的值为________.15.一个等腰三角形一边长为2,另一边长为5,这个三角形第三边的长是_________16.若点与点关于原点对称,则_______________.17.计算:(﹣4ab2)2÷(2a2b)0=_____.18.已知直线y=ax+ba≠0过点A-3,0和点B0,2,那么关于x的方程ax+b=0三、解答题(共66分)19.(10分)先化简,再求值:,其中a=+1.20.(6分)如图,在平面直角坐标系中,直线分别交轴于两点,为线段的中点,是线段上一动点(不与点重合),射线轴,延长交于点.(1)求证:;(2)连接,记的面积为,求关于的函数关系式;(3)是否存在的值,使得是以为腰的等腰三角形?若存在,求出所有符合条件的的值;若不存在,请说明理由.21.(6分)如图,已知点E在平行四边形ABCD的边AB上,设=,再用图中的线段作向量.(1)写出平行的向量;(2)试用向量表示向量;(3)求作:.22.(8分)小聪与小明在一张矩形台球桌ABCD边打台球,该球桌长AB=4m,宽AD=2m,点O、E分别为AB、CD的中点,以AB、OE所在的直线建立平面直角坐标系。(1)如图1,M为BC上一点;①小明要将一球从点M击出射向边AB,经反弹落入D袋,请你画出AB上的反弹点F的位置;②若将一球从点M(2,12)击出射向边AB上点F(0.5,0),问该球反弹后能否撞到位于(-0.5,0.8)位置的另一球?请说明理由(2)如图2,在球桌上放置两个挡板(厚度不计)挡板MQ的端点M在AD中点上且MQ⊥AD,MQ=2m,挡板EH的端点H在边BC上滑动,且挡板EH经过DC的中点E;①小聪把球从B点击出,后经挡板EH反弹后落入D袋,当H是BC中点时,试证明:DN=BN;②如图3,小明把球从B点击出,依次经挡板EH和挡板MQ反弹一次后落入D袋,已知∠EHC=75°,请你直接写出球的运动路径BN+NP+PD的长。23.(8分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点E在CD边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为,且.⑴求线段CE的长;⑵若点H为BC边的中点,连结HD,求证:.24.(8分)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.25.(10分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?26.(10分)2019年是我们伟大祖国建国70周年,各种欢庆用品在网上热销.某网店销售甲、乙两种纪念商品,甲种商品每件进价150元,可获利润40元;乙种商品每件进价100元,可获利润30元.由于这两种商品特别畅销,网店老板计划再购进两种商品共100件,其中乙种商品不超过36件.(1)若购进这100件商品的费用不得超过13700元,求共有几种进货方案?(2)在(1)的条件下,该网店在7•1建党节当天对甲种商品以每件优惠m(0<m<20)元的价格进行优惠促销活动,乙种商品价格不变,那么该网店应如何调整进货方案才能获得最大利润?
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+=7+.故选C2、C【解题分析】试题分析:∵多边形外角和="360°,"∴这个正多边形的边数是360°÷45°="1."故选C.考点:多边形内角与外角.3、B【解题分析】分析:直接利用二次根式有意义的条件以及二次根式的定义分析得出答案.详解:A、,根号下是负数,无意义,故此选项错误;B、,一定是二次根式,故此选项正确;C、,根号下有可能是负数,故此选项错误;D、三次根式,故此选项错误;故选:B.点睛:此题主要考查了二次根式的定义,形如的式子叫做二次根式,二次根式有意义的条件是被开方数是非负数..4、C【解题分析】
根据平行四边形、矩形、正方形、菱形的判定方法以及定义即可作出判断.【题目详解】解:一组对边平行且相等的四边形是平行四边形,故A错误;对角线相等的平行四边形是矩形,故B错误;有一组邻边相等的矩形是正方形,故C正确;对角线互相垂直平分的四边形是菱形或对角线互相垂直的平行四边形是菱形,故D错误;故本题答案应为:C.【题目点拨】平行四边形、矩形、正方形、菱形的判定方法以及定义是本题的考点,熟练掌握其判定方法是解题的关键.5、B【解题分析】分析:根据反比例函数的性质,可得答案.详解:由x1<0<x1,y1>y1,得:图象位于二四象限,1﹣k<0,解得:k<1.故选B.点睛:本题考查了反比例函数的性质,利用反比例函数的性质是解题的关键.6、D【解题分析】
根据分式有意义分母不能为零即可解答.【题目详解】∵分式有意义,∴x+2≠0,∴x≠-2.故选:D.【题目点拨】本题考查了分式有意义的条件,分式分母不能为零是解题的关键点.7、C【解题分析】
根据中位数的定义与众数的定义,结合图表信息解答.【题目详解】15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.1,共有4人,所以,众数是1.1.因此,中位数与众数分别是1.70,1.1.故选:C.8、C【解题分析】
设打折前商品价格为元,商品为元,根据题意列出关于与的方程组,求出方程组的解即可得到结果.【题目详解】设打折前商品价格为元,商品为元,根据题意得:,解得:,则打折前商品价格为元,商品为元.故选:.【题目点拨】此题考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系时解决问题的关键.9、B【解题分析】
假设命题的结论不成立或假设命题的结论的反面成立,然后推出矛盾,说明假设错误,结论成立.【题目详解】解:用反证法证明命题“在中,,则是锐角”时,应先假设在中,是直角或钝角.故选:B.【题目点拨】本题考查反证法,记住反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.10、C【解题分析】因为a-6+|b-8|+(c-10)2=0,所以有(a-6)
2
=0,|b-8|=0,|c-10|=0,所以a=6,b=8,c=10,因为
a2+b2=c2
,所以ABC的形状是直角三角形,故选B.二、填空题(每小题3分,共24分)11、k≤2【解题分析】
当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.【题目详解】当k-1=0,即k=1时,方程为2x+1=0,解得x=-,符合题意;②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,解得:k≤2且k≠1.综上即可得出k的取值范围为k≤2.故答案为k≤2.【题目点拨】本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.12、6【解题分析】
根据所给的一组数据的平均数写出这组数据的平均数的表示式,把要求的结果也有平均数的公式表示出来,根据前面条件得到结果.【题目详解】解:一组数据,,,的平均数为2,,,,,的平均数是故答案为6【题目点拨】本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.13、1.【解题分析】
.故答案为1.14、或【解题分析】
根据根与系数的关系求出+与·的值,然后代入即可求出m的值.【题目详解】∵,是关于的方程的两根,∴+=2m-2,·=m2-2m,代入,得m2-2m+2(2m-2)=-1,∴m2+2m-3=0,解之得m=或.故答案为:或.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.15、1【解题分析】解:分两种情况:当腰为2时,2+2<1,所以不能构成三角形;当腰为1时,2+1>1,所以能构成三角形,所以这个三角形第三边的长是1.故答案为:1.点睛:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16、【解题分析】
直接利用关于原点对称点的性质得出a,b的值.【题目详解】解:∵点A(a,1)与点B(−3,b)关于原点对称,∴a=3,b=−1,∴ab=3-1=.故答案为:.【题目点拨】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的关系是解题关键.17、16a2b1【解题分析】
直接利用整式的除法运算法则以及积的乘方运算法则计算得出答案.【题目详解】解:(-1ab2)2÷(2a2b)0=16a2b1÷1=16a2b1,故答案为:16a2b1.【题目点拨】本题主要考查了整式的乘除运算和零指数幂,正确掌握相关运算法则是解题关键.18、x=-3【解题分析】
观察即可知关于x的方程ax+b=0的解是函数y=ax+ba≠0中y=0时x的值【题目详解】解:∵直线y=ax+ba≠0过点∴当y=0时x=-3即ax+b=0的解为x=-3故答案为:x=-3【题目点拨】本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.三、解答题(共66分)19、【解题分析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【题目详解】原式==,当a=+1时,原式=.【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20、(1)详见解析;(2);(3)存在,当或时,使得是以为腰的等腰三角形.【解题分析】
(1)先判断出,,再判断出,进而判断出△BCE≌△ACD,即可得出结论;(2)先确定出点,坐标,再表示出,即可得出结论;(3)分两种情况:当时,利用勾股定理建立方程,即可得出结论;当时,先判断出Rt△OBD≌Rt△MED,得出,再用建立方程求解即可得出结论.【题目详解】解:(1)证明:射线轴,,,又为线段的中点,,在△BCE和△ACD中,,∴△BCE≌△ACD(AAS),;(2)解:在直线中,令,则,令,则,点坐标为,点坐标为,点坐标为,,;(3)当时,在中,,由勾股定理得:,即解得:;当时,过点作轴于,,,在Rt△OBD和Rt△MED中,,∴Rt△OBD≌Rt△MED(HL),,由得:解得:,综上所述,当或时,使得△BDE是以为腰的等腰三角形.【题目点拨】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.21、(1);(2);(3)见解析.【解题分析】
根据平面向量的知识,再利用三角形法即可求解.【题目详解】在此处键入公式。(1)与是平行向量;(2)=+=﹣+=﹣=+=﹣+=﹣(﹣)+=-++(3)∵+=+=如图所示,【题目点拨】该题主要考查了平面向量的知识,注意掌握三角形法的应用.22、(1)①答案见解析②答案见解析(2)①证明见解析②2【解题分析】
(1)①根据反射的性质画出图形,可确定出点F的位置;②过点H作HG⊥AB于点G,利用点H的坐标,可知HG的长,利用矩形的性质结合已知可求出点B,C的坐标,求出BM,BF的长,再利用锐角三角函数的定义,去证明tan∠MFB=tan∠HFG,即可证得∠MFB=∠HFG,即可作出判断;(2)①连接BD,过点N作NT⊥EH于点N,交AB于点T,利用三角形中位线定理可证得EH∥BD,再证明MQ∥AB,从而可证得∠DNQ=∠BNQ,∠DQN=∠NQB,利用ASA证明△DNQ≌△BNQ,然后利用全等三角形的性质,可证得结论;②作点B关于EH对称点B',过点B'作B'G⊥BC交BC的延长线于点G,连接B'H,B'N,连接AP,过点B'作B'L⊥x轴于点L,利用轴对称的性质,可证得AP=DP,NB'=NB,∠BHN=∠NHB'根据反射的性质,易证AP,NQ,NC在一条直线上,从而可证得BN+NP+PD=AB',再利用邻补角的定义,可求出∠B'HG=30°,作EK=KH,利用等腰三角形的性质,及三角形外角的性质,求出∠CKH的度数,利用解直角三角形表示出KH,CK的长,由BC=2,建立关于x的方程,解方程求出x的值,从而可得到CH,B'H的长,利用解直角三角形求出GH,BH的长,可得到点B'的坐标,再求出AL,B'L的长,然后在Rt△AB'L中,利用勾股定理就可求出AB'的长.【题目详解】(1)解:①如图1,②答:反弹后能撞到位于(-0.5,0.8)位置的另一球理由:如图,设点H(-0.5,0.8),过点H作HG⊥AB于点G,∴HG=0.8∵矩形ABCD,点O,E分别为AB,CD的中点,AD=2,AB=4,∴OB=OA=2,BC=AD=OE=2∴点B(2,0),点C(2,2),∵点M(2,1.2),点F(0.5,0),∴BF=2-0.5=1.5,BM=1.2,FG=0.5-(-0.5)=1在Rt△BMF中,tan∠MFB=BMBF=在Rt△FGH中,tan∠HFG=HGFG=∴∠MFB=∠HFG,∴反弹后能撞到位于(-0.5,0.8)位置的另一球.(2)解:①连接BD,过点N作NT⊥EH于点N,交AB于点T,∴∠TNE=∠TNH=90°,∵小聪把球从B点击出,后经挡板EH反弹后落入D袋,∴∠BNH=∠DNE,∴∠DNQ=∠BNQ;∵点M是AD的中点,MQ⊥EO,∴MQ∥AB,∴点Q是BD的中点,∴NT经过点Q;∵点E,H分别是DC,BC的中点,∴EH是△BCD的中位线,∴EH∥BD∵NT⊥EH∴NT⊥BD;∴∠DQN=∠NQB=90°在△DNQ和△BNQ中,∠DQN=∠NQB∴△DNQ≌△BNQ(ASA)∴DN=BN②作点B关于EH对称点B',过点B'作B'G⊥BC交BC的延长线于点G,连接B'H,B'N,连接AP,过点B'作B'L⊥x轴于点L,∴AP=DP,NB'=NB,∠BHN=∠NHB'由反射的性质,可知AP,NQ,NC在一条直线上,∴BN+NP+PD=NB'+NP+AP=AB';∵∠EHC=75°,∠EHC+∠BHN=180°,
∴∠BHN=180°-75°=105°,∴∠NHB'=∠EHC+∠B'HG=105°∴∠B'HG=30°;如图,作EK=KH,在Rt△ECH中,∠EHC=75°,∴∠E=90°-75°=15°,∴∠E=∠KHE=15°∴∠CKH=∠E+∠KHE=15°+15°=30°,∵设CH=x,则KH=2x,CK=3∴2x+解之:x=4-23,∴CH=4-2∴BH=B'H=BC-CH=2-(4-23)=2在Rt△B'GH中,B'G=12GH=B'Hcos∠B'HG=(23-2)×BG=BH+GH=3-∴点B'的横坐标为:3-1+2=3∴点B'(3∴AL=2+3+1=3+B'L=3在Rt△AB'L中,AB'=A∴球的运动路径BN+NP+PD的长为23【题目点拨】本题考查反射的性质,解直角三角形,矩形的性质,全等三角形的判定和性质以及勾股定理等知识点:(1)①根据反射的性质作图,②根据等角的三角函数值相等证明∠MFB=∠HFG来说明反弹后能撞到另一球;(2)①利用ASA证明△DNQ≌△BNQ,然后利用全等三角形的性质可得结论,②作出辅助线,根据反射的性质和轴对称的性质证明BN+NP+PD=AB',然后构建方程,解直角三角形并结合勾股定理求出AB'的长;其中能够根据反射的性质作出图形,利用方程思想及数形结合思想结合直角三角形的特殊角进行求解是解题的关键.23、(1)CE=;(2)见解析.【解题分析】
根据正方形的性质,(1)先设CE=x(0<x<1),则DE=1-x,由S1=S2,列等式即可得到答案.(2)根据勾股定理得到HD,再由H,C,G在同一直线上,得证HD=HG.【题目详解】根据题意,得AD=BC=CD=1,∠BCD=90°.(1)设CE=x(0<x<1),则DE=1-x,因为S1=S2,所以x2=1-x,解得x=(负根舍去),即CE=(2)因为点H为BC边的中点,所以CH=,所以HD=,因为CG=CE=,点H,C,G在同一直线上,所以HG=HC+CG=+=,所以HD=HG【题目点拨】本题考查正方形的性质、勾股定理和一元二次函数,解题的关键是根据题意列出一元二次函数.24、证明见解析【解题分析】
首先根据平行线的性质可得∠BEC=∠DFA,再加上条件∠ADF=∠CBE,AF=CE,可证明△ADF≌△CBE,再根据全等三角形的性质可得BE=DF,根据一组对边平行且相等的四边形是平行四边形进行判定即可.【题目详解】证明:∵BE∥DF,∴∠BEC=∠DFA∵在△ADF和△CBE中,,∴△ADF≌△CBE(AAS)∴BE=DF,又∵BE∥DF,∴四边形DEBF是平行四边形【题目点拨】本题考查平行四边形的判定.25、(1)1400元;(2)有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲1台,则购买电压锅1台.理由见解析;(3)购进电饭煲、电压锅各1台.【解题分析】
(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;
(2)设购买电饭煲a台
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人才租赁行业相关项目经营管理报告
- 手机指环扣产业链招商引资的调研报告
- 破碎锤项目营销计划书
- 5G智能旅游行业市场调研分析报告
- 色带卷轴细分市场深度研究报告
- 玻璃球瓶容器市场分析及投资价值研究报告
- 录像带出租行业经营分析报告
- 圆号产品供应链分析
- 手持式真空吸尘器产业链招商引资的调研报告
- 绣花纺织品制手镯首饰项目营销计划书
- 光电材料之铌酸锂薄膜铌酸锂技术突破
- 先进班组先进事迹材料
- 丝网印刷电极生产
- 超敏反应变态反应过敏反应
- 全国运动员代表资格协议书
- 第五单元-第03课时-学画长方形(学习任务单)-四年级数学上册人教版
- 超声引导下血管穿刺-张辉
- 电气仪表安装施工方案
- 马工程《公共财政概论》课后习题库(含)参考答案(可做期末复习和试卷)
- 助行器、轮助使用2016课件
- YY 9706.220-2021医用电气设备第2-20部分:婴儿转运培养箱的基本安全和基本性能专用要求
评论
0/150
提交评论