




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省部分重点高中协作体高考数学必刷试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,且,则的取值范围为()A. B. C. D.2.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.3.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元4.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2335.一艘海轮从A处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.6海里 B.6海里 C.8海里 D.8海里6.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A. B.C. D.7.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()A. B.C. D.8.已知函数,,若存在实数,使成立,则正数的取值范围为()A. B. C. D.9.记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为()A. B. C. D.10.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或11.若实数满足的约束条件,则的取值范围是()A. B. C. D.12.已知为虚数单位,若复数,,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知全集,,则________.14.已知为抛物线:的焦点,过作两条互相垂直的直线,,直线与交于、两点,直线与交于、两点,则的最小值为__________.15.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.16.实数,满足约束条件,则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)18.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:“小爱同学”智能音箱“天猫精灵”智能音箱合计男4560105女554095合计100100200(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82819.(12分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.20.(12分)椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.21.(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;②将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差.参考公式:,其中.参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63522.(10分)如图所示,直角梯形中,,,,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,得,即,则满足,则,即,则,设,则,当,解得,当,解得,当时,函数取得最小值,当时,;当时,,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.2、C【解析】
将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.3、D【解析】
根据折线图、柱形图的性质,对选项逐一判断即可.【详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.4、C【解析】
计算得到Ac,bca【详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.5、A【解析】
先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.【详解】由题意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故选:A.【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.6、A【解析】
根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,,,,,若函数图象的纵坐标不变,横坐标变为原来的倍,则,所以当时,,在有且仅有5个零点,,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.7、C【解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.【详解】如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.故选:C【点睛】本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.8、A【解析】
根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【详解】函数,,由题意得,即,令,∴,∴在上单调递增,在上单调递减,∴,而,当且仅当,即当时,等号成立,∴,∴.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.9、C【解析】
据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案.【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,,表示的平面区域即为图中的,,根据几何概率的计算公式可得,故选:C.【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.10、D【解析】
由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.11、B【解析】
根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.12、B【解析】
由可得,所以,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用集合的补集运算即可求解.【详解】由全集,,所以.故答案为:【点睛】本题考查了集合的补集运算,需理解补集的概念,属于基础题.14、16.【解析】由题意可知抛物线的焦点,准线为设直线的解析式为∵直线互相垂直∴的斜率为与抛物线的方程联立,消去得设点由跟与系数的关系得,同理∵根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离∴,同理∴,当且仅当时取等号.故答案为16点睛:(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.利用定义可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径;(2)圆锥曲线中的最值问题,可利用基本不等式求解,但要注意不等式成立的条件.15、【解析】
采用数形结合,计算以及,然后根据椭圆的定义可得,并使用余弦定理以及,可得结果.【详解】如图由,所以由,所以又,则所以所以化简可得:则故答案为:【点睛】本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.16、10【解析】
画出可行域,根据目标函数截距可求.【详解】解:作出可行域如下:由得,平移直线,当经过点时,截距最小,最大解得的最大值为10故答案为:10【点睛】考查可行域的画法及目标函数最大值的求法,基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)求出函数的定义域为,,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函数的定义域为,且.当时,对任意的,,此时函数在上为增函数,函数为最大值;当时,令,得.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,,定义域为,,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,,,构造函数,其中,,令,,当时,,所以,函数在区间上单调递减,则,则.所以,函数在区间上单调递减,,,即,即,,且,而函数在上为减函数,所以,,因此,.【点睛】本题考查利用函数的最值求参数,同时也考查了利用导数证明函数不等式,利用所证不等式的结构构造新函数是解答的关键,考查推理能力与计算能力,属于难题.18、(1)多2350人;(2)有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【解析】
(1)根据题意,知100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,即可估计该地区购买“小爱同学”的女性人数和购买“天猫精灵”的女性的人数,即可求得答案;(2)根据列联表和给出的公式,求出,与临界值比较,即可得出结论.【详解】解:(1)由题可知,100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,由于地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,估计购买“小爱同学”的女性有人.估计购买“天猫精灵”的女性有人.则,∴估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多2350人.(2)由题可知,,∴有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【点睛】本题考查随机抽样估计总体以及独立性检验的应用,考查计算能力.19、(1);(2).【解析】
分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.详解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.20、(1);(2)见解析【解析】
(1)根据已知可得,结合离心率和关系,即可求出椭圆的标准方程;(2)斜率不为零,设的方程为,与椭圆方程联立,消去,得到纵坐标关系,求出方程,令求出坐标,要证、、三点共线,只需证,将分子用纵坐标表示,即可证明结论.【详解】(1)由于,将代入椭圆方程,得,由题意知,即.又,所以,.所以椭圆的方程为.(2)解法一:依题意直线斜率不为0,设的方程为,联立方程,消去得,由题意,得恒成立,设,,所以,直线的方程为.令,得.又因为,,则直线,的斜率分别为,,所以.上式中的分子,.所以,,三点共线.解法二:当直线的斜率不存在时,由题意,得的方程为,代入椭圆的方程,得,,直线的方程为.则,,,所以,即,,三点共线.当直线的斜率存在时,设的方程为,,,联立方程消去,得.由题意,得恒成立,故,.直线的方程为.令,得.又因为,,则直线,的斜率分别为,,所以.上式中的分子所以.所以,,三点共线.【点睛】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练掌握根与系数关系,设而不求方法解决相交弦问题,考查计算求解能力,属于中档题.21、(1)不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新生儿动脉栓塞的护理
- 教育强国建设的战略规划与实施路径
- 绿色转型加速:全球与中国清洁能源市场现状及前景分析
- 浙江中考科学模拟试卷含参考答案5份
- 浙江国企招聘2024金华市创新投资发展有限公司招聘3人笔试参考题库附带答案详解
- 浙江国企招聘2025宁波大美海湾旅游开发有限公司招聘2人笔试参考题库附带答案详解
- 浙江国企招聘2024浙江仙居发展控股有限公司本部及下属企业招聘2人笔试参考题库附带答案详解
- 2025辽宁大连融金征信服务选聘8人笔试参考题库附带答案详解
- 2025河南驻马店市正阳县县管国有企业招聘21人笔试参考题库附带答案详解
- 2025年幼儿教师入编考试公共基础知识全真模拟试题库及答案(共十套)
- JJF(纺织)095-2020土工布磨损试验机校准规范
- JJG 384-2002光谱辐射照度标准灯
- 报销单填写模板
- 教师职业道德第二节-爱岗敬业资料课件
- 十八项核心医疗制度试题
- 美国、加拿大签证申请表
- 比较学前教育名词解释
- 区级综合医院关于落实区领导干部医疗保健工作实施方案
- 申请XXX最低生活保障不予确认同意告知书
- 城市雕塑艺术工程量清单计价定额2020版
- 河池市出租车驾驶员从业资格区域科目考试题库(含答案)
评论
0/150
提交评论