![2024届山东省青岛市开发区高二数学第二学期期末统考试题含解析_第1页](http://file4.renrendoc.com/view11/M01/1A/06/wKhkGWXBDAiACpkfAAHzwb8G4Ig434.jpg)
![2024届山东省青岛市开发区高二数学第二学期期末统考试题含解析_第2页](http://file4.renrendoc.com/view11/M01/1A/06/wKhkGWXBDAiACpkfAAHzwb8G4Ig4342.jpg)
![2024届山东省青岛市开发区高二数学第二学期期末统考试题含解析_第3页](http://file4.renrendoc.com/view11/M01/1A/06/wKhkGWXBDAiACpkfAAHzwb8G4Ig4343.jpg)
![2024届山东省青岛市开发区高二数学第二学期期末统考试题含解析_第4页](http://file4.renrendoc.com/view11/M01/1A/06/wKhkGWXBDAiACpkfAAHzwb8G4Ig4344.jpg)
![2024届山东省青岛市开发区高二数学第二学期期末统考试题含解析_第5页](http://file4.renrendoc.com/view11/M01/1A/06/wKhkGWXBDAiACpkfAAHzwb8G4Ig4345.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省青岛市开发区高二数学第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种 B.20种 C.25种 D.32种2.某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有()种.A. B. C. D.3.复数,则的共轭复数在复平面内对应点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.设集合,集合,则()A. B. C. D.5.是虚数单位,若,则的值是()A. B. C. D.6.若,则,就称A是伙伴关系集合,集合的所有非空子集中,具有伙伴关系的集合的个数为()A.15 B.16 C. D.7.若函数的导函数的图象如图所示,则的图象有可能是()A. B.C. D.8.已知随机变量的分布列为()01若,则的值为()A. B. C. D.9.设,则()A. B.C. D.10.从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是()A. B.C. D.11.在的展开式中,各项系数与二项式系数和之比为,则的系数为()A.21 B.63 C.189 D.72912.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值二、填空题:本题共4小题,每小题5分,共20分。13.若正数,满足,则的取值范围是________.14.设,其中、、、、是各项的系数,则在、、、、这个系数中,值为零的个数为______.15.已知四边形为矩形,,为的中点,将沿折起,得到四棱锥,设的中点为,在翻折过程中,得到如下有三个命题:①平面,且的长度为定值;②三棱锥的最大体积为;③在翻折过程中,存在某个位置,使得.其中正确命题的序号为__________.(写出所有正确结论的序号)16.5人站成一排,若其中甲、乙不相邻的不同排法共有m种,则m的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当a=3时,解不等式;(2)若不等式的解集非空,求实数a的取值范围.18.(12分)在直角坐标系中,曲线的参数方程为,(为参数),为曲线上的动点,动点满足(且),点的轨迹为曲线.(1)求曲线的方程,并说明是什么曲线;(2)在以坐标原点为极点,以轴的正半轴为极轴的极坐标系中,点的极坐标为,射线与的异于极点的交点为,已知面积的最大值为,求的值.19.(12分)为了研究广大市民对共享单车的使用情况,某公司在我市随机抽取了111名用户进行调查,得到如下数据:每周使用次数1次2次3次4次5次6次及以上男4337831女6544621合计1187111451认为每周使用超过3次的用户为“喜欢骑共享单车”.(1)分别估算男、女“喜欢骑共享单车”的概率;(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.不喜欢骑共享单车喜欢骑共享单车合计男女合计附表及公式:k2=nP(1.151.111.151.1251.1111.1151.111k2.1722.7163.8415.1246.6357.87911.82820.(12分)求二项式的展开式中项系数最大的项的系数.21.(12分)时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为和,天以上且不超过天还车的概率分别为和,两人租车都不会超过天.(1)求甲所付租车费比乙多的概率;(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.22.(10分)如图,棱锥P-ABCD的地面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=22(1)求证:BD⊥平面PAC;(2)求二面角P-CD-B的大小;(3)求点C到平面PBD的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】每个同学都有2种选择,根据乘法原理,不同的报名方法共有种,应选D.2、C【解题分析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组,人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.3、A【解题分析】
化简,写出共轭复数即可根据复平面的定义选出答案.【题目详解】,在复平面内对应点为故选A【题目点拨】本题考查复数,属于基础题.4、B【解题分析】
求解出集合,根据并集的定义求得结果.【题目详解】本题正确选项:【题目点拨】本题考查集合运算中的并集运算,属于基础题.5、C【解题分析】
6、A【解题分析】
首先确定具有伙伴集合的元素有,“和”,“和”等四种可能,它们组成的非空子集的个数为即为所求.【题目详解】根据伙伴关系集合的概念可知:-1和1本身也具备这种运算,这样所求集合即由-1,1,3和,2和这“四大”元素所组成的集合的非空子集.所以满足条件的集合的个数为24-1=15.故选A.【题目点拨】本小题主要考查新定义概念的理解,考查集合子集的个数以及非空子集的个数,属于基础题.7、C【解题分析】分析:先根据导函数的图象确定导函数大于0的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间.详解:由的图象易得当时
故函数在区间上单调递增;
当时,f'(x)<0,故函数在区间上单调递减;
故选:C.点睛:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.8、A【解题分析】
先由题计算出期望,进而由计算得答案。【题目详解】由题可知随机变量的期望,所以方差,解得,故选A【题目点拨】本题考查随机变量的期望与方差,属于一般题。9、C【解题分析】分析:由题意将替换为,然后和比较即可.详解:由题意将替换为,据此可得:.本题选择C选项.点睛:本题主要考查数学归纳法中由k到k+1的计算方法,意在考查学生的转化能力和计算求解能力.10、B【解题分析】
先求出每次抽到奇数的概率,再利用n次独立重复试验中恰好发生k的概率计算公式求出结果.【题目详解】每次抽到奇数的概率都相等,为,故恰好有2次抽到奇数的概率是••,故选:B.【题目点拨】本题主要考查n次独立重复试验中恰好发生k的概率计算公式的应用,属于基础题.11、C【解题分析】分析:令得各项系数和,由已知比值求得指数,写出二项展开式通项,再令的指数为4求得项数,然后可得系数.详解:由题意,解得,∴,令,解得,∴的系数为.故选C.点睛:本题考查二项式定理,考查二项式的性质.在的展开式中二项式系数和为,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为.12、D【解题分析】
选项A错,并无周期变化,选项B错,并不是不断减弱,中间有增强.C选项错,10月的波动大小11月分,所以方差要大.D选项对,由图可知,12月起到1月份有下降的趋势,所以去年12月份的平均值大于今年1月份的平均值.选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用基本不等式将变形为即可求得的取值范围.【题目详解】∵,,∴,即,解得,即,当且仅当时,等号成立.故答案为:.【题目点拨】本题主要考查利用基本不等式求代数式的取值范围问题,属常规考题.14、【解题分析】
求出的展开式通项为,列举出在的所有可能取值,从而可得出、、、、这个系数中值为零的个数.【题目详解】,而的展开式通项为.所以,的展开式通项为,当时,的可能取值有:、、、、、、、、、、、、、、、、、、、、,共个,因此,在、、、、这个系数中,值为零的个数为.故答案为.【题目点拨】本题考查二项展开式中项的系数为零的个数,解题的关键就是借助二项展开通项,将项的指数可取的全都列举出来,考查分析问题和解决问题的能力,属于中等题.15、①②【解题分析】
取的中点,连接、,证明四边形为平行四边形,得出,可判断出命题①的正误;由为的中点,可知三棱锥的体积为三棱锥的一半,并由平面平面,得出三棱锥体积的最大值,可判断出命题②的正误;取的中点,连接,由,结合得出平面,推出得出矛盾,可判断出命题③的正误.【题目详解】如下图所示:对于命题①,取的中点,连接、,则,,,由勾股定理得,易知,且,、分别为、的中点,所以,,四边形为平行四边形,,,平面,平面,平面,命题①正确;对于命题②,由为的中点,可知三棱锥的体积为三棱锥的一半,当平面平面时,三棱锥体积取最大值,取的中点,则,且,平面平面,平面平面,,平面,平面,的面积为,所以,三棱锥的体积的最大值为,则三棱锥的体积的最大值为,命题②正确;对于命题③,,为的中点,所以,,若,且,平面,由于平面,,事实上,易得,,,由勾股定理可得,这与矛盾,命题③错误.故答案为①②.【题目点拨】本题考查直线与平面平行、锥体体积的计算以及异面直线垂直的判定,判断这些命题时根据相关的判定定理以及性质定理,在计算三棱锥体积时,需要找到合适的底面与高来计算,考查空间想象能力,考查逻辑推理能力,属于难题.16、1【解题分析】
根据题意,分2步进行分析,先安排甲乙之外的三人,形成了4个空位,再从这4个间隔选2个插入甲乙,由分步计数原理计算即可答案.【题目详解】根据题意,分2步分析:先安排除甲乙之外的3人,有种不同的顺序,排好后,形成4个空位,在4个空位中,选2个安排甲乙,有种选法,则甲乙不相邻的排法有种,即;故答案为:1.【题目点拨】本题考查排列、组合的应用,本题是不能相邻问题,处理此类问题,需要运用插空法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)由a=3可得,去绝对值,分类讨论解不等式,求并集,可得所求解集;(2)由题意可得有解,运用绝对值不等式的性质可得此不等式左边的最小值,解a的不等式可得所求范围.【题目详解】(1)当a=3时,即为,等价于或或,解得或或,则原不等式的解集为;(2)不等式的解集非空等价于有解.由,(当且仅当时取得等号),所以,解得,故a的取值范围是.【题目点拨】本题考查分类讨论解绝对值不等式以及不等式能成立求参数的问题,考查学生分类讨论的思想,是一道容易题.18、(1)见解析;(2)2【解题分析】分析:(1)设,,根据,推出,代入到,消去参数即可求得曲线的方程及其表示的轨迹;(2)法1:先求出点的直角坐标,再求出直线的普通方程,再根据题设条件设点坐标为,然后根据两点之间距离公式及三角函数的图象与性质,结合面积的最大值为,即可求得的值;法2:将,代入,即可求得,再根据三角形面积公式及三角函数的图象与性质,结合面积的最大值为,即可求得的值.详解:(1)设,,由得.∴∵在上∴即(为参数),消去参数得.∴曲线是以为圆心,以为半径的圆.(2)法1:点的直角坐标为.∴直线的普通方程为,即.设点坐标为,则点到直线的距离.∴当时,∴的最大值为∴.法2:将,代入并整理得:,令得.∴∴∴当时,取得最大值,依题意,∴.点睛:本题主要考查把参数方程转化为普通方程,在引进参数和消去参数的过程中,要注意保持范围的一致性;在参数方求最值问题中,将动点的参数坐标,根据题设条件列出三角函数式,借助于三角函数的图象与性质,即可求最值,注意求最值时,取得的条件能否成立.19、(1)男用户中“喜欢骑共享单车”的概率的估计值为911,女用户中“喜欢骑共享单车”的概率的估计值为23(2)填表见解析,没有【解题分析】
(1)利用古典概型的概率估算男、女“喜欢骑共享单车”的概率;(2)先完成2×2列联表,再利用独立性检验判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.【题目详解】解:(1)由调查数据可知,男用户中“喜欢骑共享单车”的比率为4555因此男用户中“喜欢骑共享单车”的概率的估计值为911女用户中“喜欢骑共享单车”的比率为3045因此女用户中“喜欢骑共享单车”的概率的估计值为23(2)由图中表格可得2×2列联表如下:不喜欢骑共享单车喜欢骑共享单车合计男114555女153145合计2575111将2×2列联表代入公式计算得:K所以没有95%的把握认为是否“喜欢骑共享单车”与性别有关.【题目点拨】本题主要考查古典概型的概率的计算,考查独立性检验,意在考查学生对这些知识的理解掌握水平,属于基础题.20、或【解题分析】
根据题意,求出的展开式的通项,求出其系数,设第项的系数最大,则有,解可得的值,代入通项中计算可得答案.【题目详解】解:根据题意,的展开式的通项为,其系数为,设第项的系数最大,则有,即解可得:,故当或时,展开式中项系数最大,则有,;即系数最大的项的系数为或.【题目点拨】本题考查二项式定理的应用,注意项的系数与二项式系数的区别,属于基础题.21、(1);(2)见解析【解题分析】
(1)将情况分为甲租天以上,乙租不超过天;甲租天,乙租天两种情况;分别在两种情况下利用独立事件概率公式可求得对应概率,加和得到结果;(2)首先确定所有可能的取值,再求得每个取值所对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【题目详解】(1)若甲所付租车费比乙多,则分为:甲租天以上,乙租不超过天;甲租天,乙租天两种情况①甲租天以上,乙租不超过天的概率为:②甲租天,乙租天的概率为:甲所付租车费比乙多的概率为:(2)甲、乙两人所付的租车费之和所有可能的取值为:则;;;;的分布列为:数学期望【题目点拨】本题考查独立事件概率的求解、离散型随机变量的分布列与数学期望的求解,涉及到和事件、积事件概率的求解,考查学生的运算和求解能力,属于常考题型.22、(1)见解析;(2)θ=45°;(3)23【解题分析】
(1)先证明ABCD为正方形,可得BD⊥AC,由PA⊥平面ABCD,BD⊂平面ABCD,可得BD⊥PA,利用线面垂直的判定定理可得结果;(2)以AB,AD,AP为x,y,z轴建立空间直角坐标系,根据向量垂直数量积为零,列方程组求出平面PCD的法向量,结合(0,0,2)为平面ABCD的法向量,利用空间向量夹角余弦公式求出两个向量的夹角余弦,进而转化为二面角P-CD-B的平面角即可;(3)求出平面PBD的法向量,再求出平面的斜线PC所在的向量PC,然后求出PC【题目详解】(1)解法一:在RtΔBAD中,AD=2,BD=22∴AB=2,∴ABCD为正方形,因此BD⊥AC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球滑靴式分拣系统行业调研及趋势分析报告
- 2025-2030全球民用航空机翼行业调研及趋势分析报告
- 为他人贷款合同担保
- 叉车购销合同模板
- 2025物料购置合同管理操作规程
- 学校商铺租赁合同范本
- 提高组织和协调能力的培训
- 施工设计合同
- 商铺租赁合同范本简单
- 人才招聘中介服务合同模板
- 学校财务年终工作总结4
- 2025年人民教育出版社有限公司招聘笔试参考题库含答案解析
- 康复医学治疗技术(士)复习题及答案
- 《血管性血友病》课件
- 2024-2025学年人教版七年级数学上册期末达标测试卷(含答案)
- 2024年安全员-C证考试题库及答案(1000题)
- 高二数学下学期教学计划
- 文学类作品阅读练习-2023年中考语文考前专项练习(浙江绍兴)(含解析)
- 第五章硅酸盐分析
- 外科学总论-第十四章肿瘤
- 网络反诈知识竞赛参考题库100题(含答案)
评论
0/150
提交评论