版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东济南市2024届高二数学第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线在点处的切线与坐标轴所围三角形的面积为A. B. C. D.2.已知函数,满足和均为偶函数,且,设,则A. B. C. D.3.为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则最后一个样本编号是()A.0047 B.1663 C.1960 D.19634.正数a、b、c、d满足,,则()A. B.C. D.ad与bc的大小关系不定5.高三(1)班需要安排毕业晚会的4个音乐节目、2个舞蹈节目和l个曲艺节目的演出顺序要求两个舞蹈节目不连排,则不同排法的种数是()A.800 B.5400 C.4320 D.36006.已知命题:若,则;:“”是“”的必要不充分条件,则下列命题是真命题的是()A. B.C. D.7.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市总计愿生452065不愿生132235总计5842100附表:0.0500.0100.0013.8416.63510.828由算得,,参照附表,得到的正确结论是()A.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”C.有以上的把握认为“生育意愿与城市级别有关”D.有以上的把握认为“生育意愿与城市级别无关”8.实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于()A. B. C. D.9.已知α,β是相异两个平面,m,n是相异两直线,则下列命题中正确的是()A.若m∥n,m⊂α,则n∥α B.若m⊥α,m⊥β,则α∥βC.若m⊥n,m⊂α,n⊂β,则α⊥β D.若α∩β=m,n∥m,则n∥β10.函数在区间的图像大致为().A. B.C. D.11.为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:年龄手机品牌华为苹果合计30岁以上40206030岁以下(含30岁)152540合计5545100附:P()0.100.050.0100.0012.7063.8416.63510.828根据表格计算得的观测值,据此判断下列结论正确的是()A.没有任何把握认为“手机品牌的选择与年龄大小有关”B.可以在犯错误的概率不超过0.001的前提下认为“手机品牌的选择与年龄大小有关”C.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”D.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小无关”12.已知函数在时取得极大值,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前46项和为_____.14.已知双曲线:的右焦点到渐近线的距离为4,且在双曲线上到的距离为2的点有且仅有1个,则这个点到双曲线的左焦点的距离为______.15.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),⋯,概括出第n个式子为_______.16.已知函数的定义域是,关于函数给出下列命题:①对于任意,函数是上的减函数;②对于任意,函数存在最小值;③存在,使得对于任意的,都有成立;④存在,使得函数有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.(1)求直线的普通方程和曲线的直角坐标方程;(2)已知点的极坐标为,的值.18.(12分)已知直线的参数方程为为参数和圆的极坐标方程为(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)判断直线和圆的位置关系.19.(12分)已知函数f(x)=ln|x|①当x≠0时,求函数y=g(x②若a>0,函数y=g(x)在0,+∞上的最小值是2,求③在②的条件下,求直线y=23x+20.(12分)设函数.(1)解不等式;(2)若,使得,求实数m的取值范围.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)将,的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点在上,点为的中点,求点到直线距离的最小值.22.(10分)如图,已知点是椭圆上的任意一点,直线与椭圆交于,两点,直线,的斜率都存在.(1)若直线过原点,求证:为定值;(2)若直线不过原点,且,试探究是否为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】因为曲线,所以切线过点(4,e2)
∴f′(x)|x=4=e2,
∴切线方程为:y-e2=e2(x-4),
令y=0,得x=2,与x轴的交点为:(2,0),
令x=0,y=-e2,与y轴的交点为:(0,-e2),
∴曲线在点(4,e2)处的切线与坐标轴所围三角形的面积s=×2×|-e2|=e2.
故选D.2、C【解题分析】分析:根据函数的奇偶性和周期性求出,然后即可得到答案详解:由题意可得:故,周期为故选点睛:本题考查了函数的奇偶性和周期性,运用周期性进行化简,结合已知条件求出结果,本题的解题方法需要掌握。3、D【解题分析】,故最后一个样本编号为,故选D.4、C【解题分析】因为a,b,c,d均为正数,又由a+d=b+c得a2+2ad+d2=b2+2bc+c2所以(a2+d2)﹣(b2+c2)=2bc﹣2ad.①又因为|a﹣d|<|b﹣c可得a2﹣2ad+d2<b2﹣2bc+c2,②将①代入②得2bc﹣2ad<﹣2bc+2ad,即4bc<4ad,所以ad>bc故选C.5、D【解题分析】先排4个音乐节目和1个曲艺节目共有种排法,再从5个节目的6隔空插入两个不同的舞蹈节目有种排法,∴共有种排法,故选D6、B【解题分析】试题分析:命题为假命题,比如,但,命题为真命题,不等式的解为,所以,而,所以“”是“”的必要不充分条件,由命题的真假情况,得出为真命题,选B.考点:命题真假的判断.【易错点睛】本题主要考查了命题真假的判断以及充分必要条件的判断,属于易错题.判断一个命题为假命题时,举出一个反例即可,判断为真命题时,要给出足够的理由.对于命题,为假命题,容易判断,对于命题,要弄清楚充分条件,必要条件的定义:若,则是的充分不必要条件,若,则是的必要不充分条件,再根据复合命题真假的判断,得出为真命题.7、C【解题分析】K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,本题选择C选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.8、B【解题分析】试题分析:实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.考点:独立事件概率计算.9、B【解题分析】
在A中,根据线面平行的判定判断正误;在B中,由平面与平面平行的判定定理得α∥β;在C中,举反例即可判断判断;在D中,据线面平行的判定判断正误;【题目详解】对于A,若m∥n,m⊂α,则n∥α或n⊂α,故A错;对于B,若m⊥α,m⊥β,则由平面与平面平行的判定定理得α∥β,故B正确;对于C,不妨令α∥β,m在β内的射影为m′,则当m′⊥n时,有m⊥n,但α,β不垂直,故C错误;对于D,若α∩β=m,n∥m,则n∥β或n⊂β,故D错.故选:B.【题目点拨】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.10、A【解题分析】分析:判断的奇偶性,在上的单调性,计算的值,结合选项即可得出答案.详解:设,当时,,当时,,即函数在上为单调递增函数,排除B;由当时,,排除D;因为,所以函数为非奇非偶函数,排除C,故选A.点睛:本题主要考查了函数图象的识别,其中解答中涉及到函数的单调性、函数的奇偶性和函数值的应用,试题有一定综合性,属于中档试题,着重考查了分析问题和解答问题的能力.11、C【解题分析】
根据的意义判断.【题目详解】因为,所以可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”,故选:C.【题目点拨】本题考查独立性检验,属于简单题.12、D【解题分析】
求出原函数的导函数,可得当a≥0时,f(x)在x=1取得极小值,不符合;当a<0时,令f′(x)=0,得x=1或ln(﹣a),为使f(x)在x=1取得极大值,则有ln(﹣a)>1,由此求得a的范围得答案.【题目详解】由,得f′(x)=e2x+(a﹣e)ex﹣ae=(ex+a)(ex﹣e).当a≥0时,ex+a>0,由f′(x)>0,得x>1,由f′(x)<0,得x<1.∴f(x)在(﹣∞,1)上为减函数,在(1,+∞)上为增函数,则f(x)在x=1取得极小值,不符合;当a<0时,令f′(x)=0,得x=1或ln(﹣a),为使f(x)在x=1取得极大值,则有ln(﹣a)>1,∴a<﹣e.∴a的取值范围是a<﹣e.故选:D.【题目点拨】本题考查利用导数研究函数的极值,关键是明确函数单调性与导函数符号间的关系,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据“杨辉三角”的特点可知次二项式的二项式系数对应“杨辉三角”中的第行,从而得到第行去掉所有为的项的各项之和为:;根据每一行去掉所有为的项的数字个数成等差数列的特点可求得至第行结束,数列共有项,则第项为,从而加和可得结果.【题目详解】由题意可知,次二项式的二项式系数对应“杨辉三角”中的第行则“杨辉三角”第行各项之和为:第行去掉所有为的项的各项之和为:从第行开始每一行去掉所有为的项的数字个数为:则:,即至第行结束,数列共有项第项为第行第个不为的数,即为:前项的和为:本题正确结果:【题目点拨】本题考查数列求和的知识,关键是能够根据“杨辉三角”的特征,结合二项式定理、等差等比数列求和的方法来进行转化求解,对于学生分析问题和总结归纳的能力有一定的要求,属于较难题.14、8【解题分析】
双曲线:的右焦点到渐近线的距离为4,可得的值,由条件以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.即,根据可求得答案.【题目详解】由题意可得双曲线的一条渐近线方程为,由焦点到渐近线的距离为4,即,即.双曲线上到的距离为2的点有且仅有1个,即以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.所以,又即,即,所以.所以双曲线的右顶点到左焦点的距离为.所以这个点到双曲线的左焦点的距离为8.故答案为:8【题目点拨】本题考查双曲线的性质,属于中档题.15、1-4+9-16+...【解题分析】
分析:根据前面的式子找规律写出第n个式子即可.详解:由题得1-4+9-16+点睛:(1)本题主要考查不完全归纳,考查学生对不完全归纳的掌握水平和观察分析能力.(2)不完全归纳得到的结论,最好要检验,发现错误及时纠正.16、②④【解题分析】函数的定义域是,且,当时,在恒成立,所以函数在上单调递增,故①错误;对于,存在,使,则在上单调递减,在上单调递增,所以对于任意,函数存在最小值,故②正确;函数的图象在有公共点,所以对于任意,有零点,故③错误;由②得函数存在最小值,且存在,使,当时,,当时,,故④正确;故填②④.点睛:本题的易错点在于正确理解“任意”和“存在”的含义,且正确区分两者的不同.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2).【解题分析】分析:(1)先根据加减消元法得直线的普通方程,再根据将曲线的极坐标方程化为直角坐标方程;(2)先求P直角坐标,再设直线的参数方程标准式,代入曲线的直角坐标方程,根据参数几何意义以及利用韦达定理得结果.详解:(1)的普通方程为:;又,即曲线的直角坐标方程为:(2)解法一:在直线上,直线的参数方程为(为参数),代入曲线的直角坐标方程得,即,.解法二:,,,.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cosα,y0+t1sinα),(x0+t2cosα,y0+t2sinα).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.18、(1),;(2)相交.【解题分析】
(1)利用加减消参法得到直线l的普通方程,利用极坐标转化直角坐标公式的结论转化圆C的方程;(2)利用圆心到直线的距离与半径的比较判断直线与圆的位置关系.【题目详解】(1)消去参数,得直线的普通方程为;圆极坐标方程化为.两边同乘以得,消去参数,得⊙的直角坐标方程为:.(2)圆心到直线的距离,所以直线和⊙相交.19、(1)y=g(x)=x+ax;(2)【解题分析】⑴∵f(x∴当x>0时,f(x)=lnx∴当x>0时,f'(x)=1∴当x≠0时,函数y=g(x⑵∵由⑴知当x>0时,g(x∴当a>0,x>0时,g(x)≥2a∴函数y=g(x)在0,+∞上的最小值是2a,∴依题意得2⑶由y=23∴直线y=23x+=724-ln320、(1);(2).【解题分析】
1把用分段函数来表示,令,求得x的值,可得不等式的解集2由1可得的最小值为,再根据,求得m的范围.【题目详解】1函数,令,求得,或,故不等式的解集为,或;2若存在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度鱼塘承包权抵押贷款服务合同4篇
- 二零二五年度橙子出口欧盟认证采购合同3篇
- 2025年度个人房屋维修欠款合同模板4篇
- 二零二五年度畜牧养殖生物安全防控体系建设合同4篇
- 2025年度个人房屋买卖合同履行监督及保障协议2篇
- 2025版学校校舍出租协议(含校园绿化养护)3篇
- 探索学生自主学习的心理机制及在语文教学中的应用
- 2025年度个人房产投资合同协议书3篇
- 二零二五年度高端制造业供应链金融服务合同3篇
- 2025年粤教版八年级历史下册阶段测试试卷
- 2025年安徽马鞍山市两山绿色生态环境建设有限公司招聘笔试参考题库附带答案详解
- 春节文化研究手册
- 犯罪现场保护培训课件
- 扣款通知单 采购部
- 电除颤操作流程图
- 湖北教育出版社三年级下册信息技术教案
- 设计基础全套教学课件
- IATF16949包装方案评审表
- 人教版八年级美术下册全册完整课件
- 1 运行方案说明
- 北京房地产典当合同
评论
0/150
提交评论