版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆和田地区高二数学第二学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙两位同学将高三6次物理测试成绩做成如图所示的茎叶图加以比较(成绩均为整数满分100分),乙同学对其中一次成绩记忆模糊,只记得成绩不低于90分且不是满分,则甲同学的平均成绩超过乙同学的平均成绩的概率为()A. B. C. D.2.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有()A.288种 B.144种 C.720种 D.360种3.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种 B.5种 C.6种 D.7种4.在四边形中,如果,,那么四边形的形状是()A.矩形 B.菱形 C.正方形 D.直角梯形5.某射手每次射击击中目标的概率是,且各次射击的结果互不影响.设随机变量为该射手在次射击中击中目标的次数,若,,则和的值分别为()A.5, B.5, C.6, D.6,6.已知函数,给出下列四个说法:;函数的周期为;在区间上单调递增;的图象关于点中心对称其中正确说法的序号是A. B. C. D.7.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B. C. D.8.若函数对任意都有成立,则()A.B.C.D.与的大小不确定9.设复数满足,则的共轭复数的虚部为()A.1 B.-1 C. D.10.函数的图象可能是()A. B.C. D.11.已知a,b∈R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.极坐标系内,点到直线的距离是(
)A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.计算的结果为______.14.若点是曲线上任意一点,则点到直线的距离的最小值为____________15.双曲线的焦点坐标为____________.16.已知为抛物线的焦点,点、在抛物线上位于轴的两侧,且(其中为坐标原点),若的面积是,的面积是,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)关于x的不等式的解集包含区间,求a的取值范围.18.(12分)在平面直角坐标系中,设向量,.(1)当时,求的值;(2)若,且.求的值.19.(12分)已知实数使得函数在定义域内为增函数;实数使得函数在上存在两个零点,且分别求出条件中的实数的取值范围;甲同学认为“是的充分条件”,乙同学认为“是的必要条件”,请判断两位同学的说法是否正确,并说明理由.20.(12分)设分别为椭圆的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.(1)若椭圆的离心率为,求椭圆的方程;(2)设为椭圆上一点,且在第一象限内,直线与轴相交于点,若以为直径的圆经过点,证明:点在直线上.21.(12分)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为,求的数学期望.22.(10分)已知函数.(Ⅰ)求函数处的切线方程;(Ⅱ)时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
首先求得甲的平均数,然后结合题意确定污损的数字可能的取值,最后利用古典概型计算公式求解其概率值即可.【题目详解】由题意可得:,设被污损的数字为x,则:,满足题意时,,即:,即x可能的取值为,结合古典概型计算公式可得满足题意的概率值:.故选C.【题目点拨】本题主要考查茎叶图的识别与阅读,平均数的计算方法,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.2、B【解题分析】
根据题意分步进行分析:①用倍分法分析《将进酒》,《望岳》和另外两首诗词的排法数目;②用插空法分析《山居秋暝》与《送杜少府之任蜀州》的排法数目,由分步计数原理计算可得答案【题目详解】根据题意分步进行分析:①将《将进酒》,《望岳》和另外两首诗词的首诗词全排列,则有种顺序《将进酒》排在《望岳》的前面,这首诗词的排法有种②,这首诗词排好后,不含最后,有个空位,在个空位中任选个,安排《山居秋暝》与《送杜少府之任蜀州》,有种安排方法则后六场的排法有种故选【题目点拨】本题考查的是有关限制条件的排列数的问题,第一需要注意先把不相邻的元素找出来,将剩下的排好,这里需要注意定序问题除阶乘,第二需要将不相邻的两个元素进行插空,利用分步计数原理求得结果,注意特殊元素特殊对待。3、A【解题分析】试题分析:分类:三堆中“最多”的一堆为5个,其他两堆总和为5,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为4个,其他两堆总和为6,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为3个,那是不可能的.考点:本题主要考查分类计数原理的应用.点评:本解法从“最多”的一堆分情况考虑开始,分别计算不同分法,然后求和.用列举法也可以,形象、直观易懂.4、A【解题分析】
由可判断出四边形为平行四边形,由可得出,由此判断出四边形的形状.【题目详解】,所以,四边形为平行四边形,由可得出,因此,平行四边形为矩形,故选A.【题目点拨】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.5、B【解题分析】
通过二项分布公式及可得答案.【题目详解】根据题意,,因此,,解得,故选B.【题目点拨】本题主要考查二项分布的相关公式,难度不大.6、B【解题分析】
根据函数的周期性可排除,同时可以确定对.由,可去绝对值函数化为,可判断对.由取特值,可确定错.【题目详解】,所以函数的周期不为,错,,周期为.=,对.当时,,,所以f(x)在上单调递增.对.,所以错.即对,填.【题目点拨】本题以绝对值函数形式综合考查三角函数求函数值、周期性、单调性、对称性等性质,需要从定义角度入手分析,也是解题之根本.7、D【解题分析】
连结,可证明是平行四边形,则,故的余弦值即为异面直线和所成角的余弦值,利用余弦定理可得结果.【题目详解】连结,由题得,故是平行四边形,,则的余弦值即为所求,由,可得,,故有,解得,故选D.【题目点拨】本题考查异面直线的夹角的余弦值和余弦定理,常见的方法是平移直线,让两条直线在同一平面中,再求夹角的余弦值.8、A【解题分析】
构造函数,利用导数可判断g(x)的单调性,由单调性可得g(ln3)与g(ln5)的大小关系,整理即可得到答案.【题目详解】解:令,则,因为对任意都有,所以,即在R上单调递增,又,所以,即,即,故选:A.【题目点拨】本题考查导数的运算及利用导数研究函数的单调性,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性,属中档题.9、A【解题分析】
先求解出的共轭复数,然后直接判断出的虚部即可.【题目详解】因为,所以,所以的虚部为.故选:A.【题目点拨】本题考查共轭复数的概念以及复数的实虚部的认识,难度较易.复数的实部为,虚部为.10、A【解题分析】
求导,判断导函数函数值的正负,从而判断函数的单调性,通过单调性判断选项.【题目详解】解:当时,,则,若,,,若,,,则恒成立,即当时,恒成立,则在上单调递减,
故选:A.【题目点拨】本题主要考查函数的图象,可以通过函数的性质进行排除,属于中档题.11、A【解题分析】
根据复数的基本运算,结合充分条件和必要条件的定义进行判断即可.【题目详解】解:因为,若,则等式成立,即充分性成立,若成立,即,所以解得或即必要性不成立,则“”是“”的充分不必要条件,故选:A.【题目点拨】本题主要考查充分条件和必要条件的判断,结合复数的基本运算是解决本题的关键,属于基础题.12、B【解题分析】
通过直角坐标和极坐标之间的互化,即可求得距离.【题目详解】将化为直角坐标方程为,把化为直角坐标点为,即到直线的距离为2,故选B.【题目点拨】本题主要考查极坐标与直角坐标之间的互化,点到直线的距离公式,难度不大.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用指数运算、对数运算的性质即可得出.【题目详解】原式
.
故答案为:.【题目点拨】本题考查了指数运算性质,对数的运算性质,考查了推理能力与计算能力,属于中档题.14、【解题分析】
因为点P是曲线上任意一点,则点P到直线的距离的最小值是过点P的切线与直线平行的时候,则,即点(1,1)那么可知两平行线间的距离即点(1,1)到直线的距离为15、【解题分析】
首先将双曲线方程整理为标准方程的形式,然后求解其焦点坐标即可.【题目详解】双曲线方程即:,其中,故,由双曲线的方程可知双曲线焦点在x轴上,故焦点坐标为.故答案为:.【题目点拨】本题主要考查双曲线方程焦点的计算,属于基础题.16、【解题分析】
设点、,并设,则,利用,可得出,并设直线的方程为,将此直线与抛物线的方程联立,利用韦达定理可求出的值,可得出直线过定点,再利用三角形的面积公式以及基本不等式可求出的最小值.【题目详解】设点、,并设,则,,则,易知,得,.设直线的方程为,代入抛物线的方程得,则,得,所以直线的方程为,直线过轴上的定点,,当且仅当时,等式成立,因此,的最小值为,故答案为.【题目点拨】本题考查直线与抛物线的综合问题,常规思路就是设出直线方程,将其与抛物线的方程联立,利用韦达定理求解,另外在求最值时,充分利用基本不等式进行求解,难点在于计算量较大,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)将代入中去绝对值后写为分段函数的形式,然后根据分别解不等式即可;(2)根据题意可知,恒成立,然后将问题转化对恒成立,令,再构造函数,,,根据解出的范围.【题目详解】解:(1),①当时,,解得,所以;②当时,,解得,所以;③当时,解得,所以.综上所述,不等式的解集为.(2)依题意得,恒成立,即,即,即,即.令,则,即,恒成立,即,构造函数,则解得.【题目点拨】本题考查了解绝对值不等式和不等式恒成立问题,考查了分类讨论思想和转化思想,考查了计算能力,属于中档题.18、(1);(2).【解题分析】分析:(1)直接带入即可(2)利用向量数量积打开后再利用二倍角公式变形化同名详解:(1)当时,,,所以.(2),若.则,即.因为,所以,所以,所以.点睛:三角函数跟向量的综合是高考当中的热点问题,常常需要利用二倍角公式的逆用对得到的函数关系式进行化简,最终化简为的形式.19、(1),(2)甲、乙两同学的判断均不正确,理由见解析【解题分析】
(1)真时,先求函数的导数,令恒成立,整理得到恒成立,转化为求函数的最小值;真时,只需满足即可;(2)根据(1)的结果,判断两个集合是否具有包含关系,根据集合的包含关系判断充分必要条件.【题目详解】解,的定义域为,因为在定义域内为增函数,所以对,恒有整理得,恒成立.于是因此满足条件的实数的取值范围是因为的存在两个零点且,所以即,解得因此满足条件的实数的取值范围是甲、乙两同学的判断均不正确,因为,所以不是的充分条件,因为,所以不是的必要条件.【题目点拨】本题考查了由命题的真假,求参数取值范围的问题,本题的一个易错点是真时,有的同学只写出,而忽略了的正负决定函数图像的开口,第二问考查了当命题是以集合形式给出时,如何判断充分必要条件,,,若时,是的充分不必要条件,是的必要不充分条件,当没有包含关系时,是的既不充分也不必要条件,当时,是的充要条件.20、(1);(2)见解析【解题分析】
(1)设,由,得,且,得,,,∴椭圆的方程为;(2)由题意,得,∴椭圆的方程,则,,,设,由题意知,则直线的斜率,直线的方程为,当时,,即点,直线的斜率为,∵以为直径的圆经过点,∴,∴,化简得,又∵为椭圆上一点,且在第一象限内,∴,,,由①②,解得,,∴,即点在直线上.21、【解题分析】
的可能值为,计算概率得到分布列,再计算数学期望得到答案.【题目详解】的可能值为,则;;.故分布列为:故.【题目点拨】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.22、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)对函数求导,再令x=1,可求得,回代可知,由导数可求得切线方程。(Ⅱ)由,令由导数可知,在时恒成立。下证,所以。【题目详解】(Ⅰ)函数的定义域为因为,所以,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年图书电商平台合作推广及购销合同协议3篇
- 2024年白糖购销协议
- 2024年离婚赔偿协议书范本
- 小班空中动物课程设计
- 文化学校课程设计
- 搜索引擎的课程设计
- 2024年水处理设备租赁与运行维护服务合同3篇
- 旅游路线规划课程设计
- 幼儿园自然采集课程设计
- 2024年标准借款协议印花税缴纳版无水印下载版
- 2024-2025学年上海市虹口区高三一模地理试卷(含答案)
- 2024年军事理论知识全册复习题库及答案
- 第十一届“大唐杯”新一代信息通信技术大赛(省赛)考试题及答案
- 中国文化交流英语(大连理工大学)智慧树知到期末考试答案章节答案2024年大连理工大学
- 抵制宗教进校园
- 部编版小学语文一年级上册期末复习计划
- 大猫英语分级阅读 三级1 How to Have a Party 课件
- 常用焊接英语词汇大全
- 数控技术专业实践教学体系
- 福伊特液力变矩器的结构及工作原理的使用
- 凉山中小学期末考试题-凉山州2017-2018学年度上期期末试题八年级数学答案
评论
0/150
提交评论