版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省楚雄市古城中学2024届数学高二第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示的流程图中,输出的含义是()A.点到直线的距离B.点到直线的距离的平方C.点到直线的距离的倒数D.两条平行线间的距离2.正数满足,则()A. B. C. D.3.若展开式中只有第四项的系数最大,则展开式中有理项的项数为()A. B. C. D.4.已知等比数列{an}中,,,则()A.±2 B.-2 C.2 D.45.的展开式中的系数为()A. B. C. D.6.的展开式中的系数为()A.100 B.80 C.60 D.407.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线,弦过焦点,为阿基米德三角形,则的面积的最小值为()A. B. C. D.8.已知两条不同直线a、b,两个不同平面、,有如下命题:①若,,则;②若,,则;③若,,则;④若,,,则以上命题正确的个数为()A.3 B.2 C.1 D.09.已知函数的图象如图所示,则函数的对称中心坐标为()A. B.C. D.10.若函数在上单调递增,则实数的取值范围是()A. B. C. D.11.已知均为实数,若(为虚数单位),则()A.0 B.1 C.2 D.-112.已知点与抛物线的焦点的距离是,则的值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.幂函数在区间上是增函数,则________.14.定义域为的奇函数满足:对,都有,且时,,则__________.15.定义在R上的函数满足,且对任意的不相等的实数,有成立,若关于x的不等式在上恒成立,则实数m的取值范围________.16.求函数的单调增区间是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为,直线与曲线C的交点为,,求的值.18.(12分)已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且.(1)求直线的方程;(2)求圆的方程.19.(12分)为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务的时间的统计数据如下表:超过1小时不超过1小时男208女12m(1)求m,n;(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?(3)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.附:0.0500.0100.001k3.8416.63510.82820.(12分)如图,正方体的所有棱长都为1,求点A到平面的距离.21.(12分)已知函数,不等式的解集是.(1)求a的值;(2)若关于x的不等式的解集非空,求实数k的取值范围.22.(10分)已知向量m=(3sin(1)若m⋅n=1(2)记f(x)=m⋅n在ΔABC中角A,B,C的对边分别为a,b,c,且满足(2a-c)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
将代入中,结合点到直线的距离公式可得.【题目详解】因为,,所以,故的含义是表示点到直线的距离.故选A.【题目点拨】本题考查了程序框图以及点到直线的距离公式,属基础题.2、C【解题分析】给定特殊值,不妨设,则:.本题选择C选项.3、D【解题分析】
根据最大项系数可得的值,结合二项定理展开式的通项,即可得有理项及有理项的个数.【题目详解】展开式中只有第四项的系数最大,所以,则展开式通项为,因为,所以当时为有理项,所以有理项共有4项,故选:D.【题目点拨】本题考查了二项定理展开式系数的性质,二项定理展开式通项的应用,有理项的求法,属于基础题.4、C【解题分析】
根据等比数列性质得,,再根据等比数列性质求得.【题目详解】因为等比数列中,,所以,即以,因此=,因为,同号,所以选C.【题目点拨】在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.5、D【解题分析】
写出二项展开式的通项,令的指数等于,求出参数的值,再代入通项即可得出项的系数.【题目详解】二项展开式的通项为,令,得,因此,的展开式中的系数为,故选:D.【题目点拨】本题考查二项式指定项的系数的计算,解题的关键就是充分利用二项展开式的通项,考查计算能力,属于中等题.6、D【解题分析】
由二项式项的公式,直接得出x2的系数等于多少的表达式,由组合数公式计算出结果选出正确选项.【题目详解】因为的展开式中含的项为,故的系数为40.故选:D【题目点拨】本题考查二项式系数的性质,根据项的公式正确写出x2的系数是解题的关键,对于基本公式一定要记忆熟练.7、B【解题分析】
利用导数的知识,可得,即三角形为直角三角形,利用基本不等式,可得当直线垂直轴时,面积取得最小值.【题目详解】设,过A,B的切线交于Q,直线的方程为:,把直线的方程代入得:,所以,则,由导数的知识得:,所以,所以,所以,因为,当时,可得的最大值为,故选B.【题目点拨】本题是一道与数学文化有关的试题,如果能灵活运用阿基米德三角形的结论,即当直线过抛物线的焦点,则切线与切线互相垂直,能使运算量变得更小.8、C【解题分析】
直接利用空间中线线、线面、面面间的位置关系逐一判定即可得答案.【题目详解】①若a∥α,b⊂α,则a与b平行或异面,故①错误;②若a∥α,b∥α,则a∥b,则a与b平行,相交或异面,故②错误;③若,a⊂α,则a与β没有公共点,即a∥β,故③正确;④若α∥β,a⊂α,b⊂β,则a与b无公共点,∴平行或异面,故④错误.∴正确的个数为1.故选C.【题目点拨】本题考查命题真假的判断,考查直线与平面之间的位置关系,涉及到线面、面面平行的判定与性质定理,是基础题.9、D【解题分析】
试题分析:由图象可知又,又,.,又,所以,由,得,则的对称中心坐标为.考点:1.三角函数的性质;2.三角函数图像的性质.【方法点睛】根据,的图象求解析式的步骤:1.首先确定振幅和周期,从而得到与;2.求的值时最好选用最值点求,峰点:,;谷点:,,也可用零点求,但要区分该零点是升零点,还是降零点,升零点(图象上升时与轴的交点):,;降零点(图象下降时与轴的交点):,.10、A【解题分析】
根据题意函数在上单调递增,转化为在恒成立,利用换元法,结合一元二次函数的性质,列出相应的不等式,即可求解出的取值范围。【题目详解】因为函数在单调递增,所以恒成立,即恒成立,因为,所以,即.故答案选A。【题目点拨】本题考查了已知函数的单调性求参数的范围,解题时常与导数的性质与应用相结合。11、C【解题分析】
将已知等式整理为,根据复数相等可求得结果.【题目详解】由题意得:,即:则:本题正确选项:【题目点拨】本题考查复数相等的定义,涉及简单的复数运算,属于基础题.12、B【解题分析】
利用抛物线的焦点坐标和两点间的距离公式,求解即可得出的值.【题目详解】由题意可得抛物线的焦点为,因为点到抛物线的焦点的距离是5.所以解得.故选:B.【题目点拨】本题主要考查抛物线的标准方程和性质,还结合两点间距离公式求解.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
根据幂函数的定义求出m的值,判断即可.【题目详解】若幂函数在区间(0,+∞)上是增函数,则由m1﹣3m+3=1解得:m=1或m=1,m=1时,f(x)=x,是增函数,m=1时,f(x)=1,是常函数(不合题意,舍去),故答案为1.【题目点拨】本题考查了幂函数的定义,考查函数的单调性问题,是一道基础题.14、2【解题分析】
根据是奇函数,有,再结合,推出,得到的最小正周期为8,再求解.【题目详解】因为定义域为的是奇函数,所以,又因为,所以,所以,即,所以的最小正周期为8,又因为时,,所以.故答案为:2【题目点拨】本题主要考查函数的奇偶性、周期性的应用,还考查了运算求解的能力,属于中档题.15、【解题分析】
利用函数的奇偶性和单调性,可得对恒成立,通过参变分离即得且对恒成立,求得相应的最大值和最小值,从而得到的取值范围.【题目详解】解:定义在R上的函数满足为偶函数对任意的不相等的实数,有成立在上单调递减,在上单调递增由在上恒成立得在上恒成立在上恒成立,即对恒成立此时且对恒成立设,则令,解得,随的变化如下表0当时,设,则当时,在上单调递减,即当时,则.综上所述,故答案为:.【题目点拨】本题考查了函数的奇偶性,考查了函数的单调性在解抽象不等式得应用,考查了运用导数求最值的方法.若对任意的不相等的实数,有成立,说明在区间上为减函数;若对任意的不相等的实数,有成立,说明在区间上为增函数.在解抽象不等式时,常常利用函数的单调性将抽象不等式转化为具体不等式.对于含参不等式在某区间上恒成立时,常常采用参变分离的方法,通过求出分离参数后函数的最大值或者最小值,来确定参数的取值范围.16、或【解题分析】
求的导函数,利用,可得函数的单调递增区间.【题目详解】解:由,得令,可得故函数的单调递增区间是故答案为或.【题目点拨】本题考查导数知识的运用,函数求导,考查函数的单调性,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
试题分析:(1)在方程两边同乘以极径可得,再根据,代入整理即得曲线的直角坐标方程;(2)把直线的参数方程代入圆的直角坐标方程整理,根据韦达定理即可得到的值.试题解析:(1)等价于①将代入①既得曲线C的直角坐标方程为,②(2)将代入②得,设这个方程的两个实根分别为则由参数t的几何意义既知,.考点:圆的极坐标方程与直角坐标方程的互化及直线参数方程的应用.18、(1);(2)或.【解题分析】
(1)先求得直线的斜率和的中点,进而求得斜率,利用点斜式得直线方程.(2)设出圆心的坐标,利用直线方程列方程,利用点到直线的距离确定和的等式综合求得和,则圆的方程可得.【题目详解】(1)直线的斜率,的中点坐标为直线的方程为(2)设圆心,则由点在上,得.①又直径,,.②由①②解得或,圆心或圆的方程为或【题目点拨】本题主要考查了直线与圆的方程的应用.考查了学生基础知识的综合运用能力.19、(1),(2)没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关(3)估计这6名学生中一周参加社区服务时间超过1小时的人数是4人【解题分析】
(1)根据分层抽样比例列方程求出n的值,再计算m的值;(2)根据题意完善2×2列联表,计算K2,对照临界值表得出结论;(3)计算参加社区服务时间超过1小时的频率,用频率估计概率,计算所求的频数即可.【题目详解】(1)根据分层抽样法,抽样比例为,∴n=48;∴m=48﹣20﹣8﹣12=8;(2)根据题意完善2×2列联表,如下;超过1小时不超过1小时合计男生20828女生12820合计321648计算K20.6857<3.841,所以没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关;(3)参加社区服务时间超过1小时的频率为,用频率估计概率,从该校学生中随机调査6名学生,估计这6名学生中一周参加社区服务时间超过1小时的人数为64(人).【题目点拨】本题考查了列联表与独立性检验的应用问题及用频率估计概率的应用问题,考查了运算能力,属于中档题.20、【解题分析】
由题意首先求得三棱锥的体积,然后利用等体积法即可求得点A到平面的距离.【题目详解】由题意可得,三棱锥的体积,且是边长为的等边三角形,其面积,设点A到平面的距离为,利用等体积法可得:,则.即点A到平面的距离为.【题目点拨】本题主要考查点面距离的计算,等体积法的应用等知识,意在考查学生的转化能力和计算求解能力.21、(1)2;(2).【解题分析】
(1)根据绝对值不等式的解法,结合不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考驾照合同模板
- 脐橙购销合同范本
- 快递店面转让合同快递转让合同大全
- 《环境微生物实验》课件
- 2024年度大型科学仪器共享服务协议
- 财务预算报告范文
- 《MATLAB编程及应用》全套教学课件
- 财务报告分析范文
- 购买树苗合同范本
- 2024年度企业咨询服务与战略外包合同2篇
- 检测机构员工手册模板
- (完整版)连词和并列句-课件
- 国家电网有限公司十八项电网重大反事故措施修订版-2018版
- 战严寒、磨意志1130班会
- 蛛网膜下腔出血护理PPT课件
- 工艺管道jsa安全风险分析
- 高一分文理科语文第一课
- 青春期多囊卵巢综合征诊治共识.ppt
- 施工标准化措施
- 维宏系统百问汇总整编
- 深圳市福田区大学生实习基地实习协议.doc
评论
0/150
提交评论