版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省大庆市让胡路区铁人中学数学高二第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的值域是A. B. C. D.2.正弦函数是奇函数,是正弦函数,因此是奇函数,以上推理()A.结论正确 B.大前提不正确 C.小前提不正确 D.大前提、小前提、结论都不正确3.已知复数,则在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限4.是单调函数,对任意都有,则的值为()A. B. C. D.5.已知为虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.椭圆的长轴长为()A.1 B.2 C. D.47.在一次独立性检验中,其把握性超过99%但不超过99.5%,则的可能值为()参考数据:独立性检验临界值表0.1000.0500.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.5.424 B.6.765 C.7.897 D.11.8978.已知函数,给出下列四个说法:;函数的周期为;在区间上单调递增;的图象关于点中心对称其中正确说法的序号是A. B. C. D.9.执行如右图所示的程序框图,则输出的的值是()A.7 B.6 C.5 D.310.曲线的图像()A.关于轴对称B.关于原点对称,但不关于直线对称C.关于轴对称D.关于直线对称,关于直线对称11.已知定义域为的函数满足‘’,当时,单调递减,如果且,则的值()A.等于0 B.是不等于0的任何实数C.恒大于0 D.恒小于012.已知函数在区间上恰有一个最大值点和一个最小值点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若,则________14.在中,,,,则的面积等于__________.15.在如图三角形数阵中,从第3行开始,每一行除1以外,其它每一个数字是它上一行的左右两个数字之和.已知这个三角形数阵开头几行如图所示,若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为,则这一行是第__________行(填行数).16.若一个直六棱柱的三视图如图所示,则这个直六棱柱的体积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数f(x)=1-x2+ln(x+1).(1)求函数f(x)的单调区间;(2)若不等式f(x)>-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.18.(12分)在平面四边形中,、分、所成的比为,即,则有:.(1)拓展到空间,写出空间四边形类似的命题,并加以证明;(2)在长方体中,,,,、分别为、的中点,利用上述(1)的结论求线段的长度;(3)在所有棱长均为平行六面体中,(为锐角定值),、分、所成的比为,求的长度.(用,,表示)19.(12分)人站成两排队列,前排人,后排人.(1)一共有多少种站法;(2)现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,求有多少种不同的加入方法.20.(12分)在中,角,,的对边分别为,,,且.(1)求.(2)若,求面积的最大值.21.(12分)已知函数关系式:的部分图象如图所示:(1)求,,的值;(2)设函数,求在上的单调递减区间.22.(10分)某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用ξ表示这5位乘客在第20层下电梯的人数,求:(1)随机变量ξ的分布列;(2)随机变量ξ的均值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:由于函数在上是减函数,且,利用单调性求得函数的值域详解:函数在上是减函数,且,当时,函数取得最小值为当时,函数取得最大值为故函数的值域为故选点睛:本题主要考查的是指数函数的单调性,求函数的值域,较为基础。2、C【解题分析】分析:根据题意,分析所给推理的三段论,找出大前提,小前提,结论,再判断正误即可得到答案.详解:根据题意,该推理的大前提:正弦函数是奇函数,正确;小前提是:是正弦函数,因为该函数不是正弦函数,故错误;结论:是奇函数,,故错误.故选:C.点睛:本题考查演绎推理的基本方法,关键是理解演绎推理的定义以及三段论的形式.3、C【解题分析】分析:详解:复数,-1-i,对应的点为(-1,-1)是第四象限点.故答案为:C.点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.4、A【解题分析】
令,根据对任意都有,对其求导,结合是单调函数,即可求得的解析式,从而可得答案.【题目详解】令,则,.∴∵是单调函数∴∴,即.∴故选A.【题目点拨】本题考查的知识点是函数的值,函数解析式的求法,其中解答的关键是求出抽象函数解析式,要注意对已知条件及未知条件的凑配思想的应用.5、A【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果.详解::由于复数,,在复平面的对应点坐标为,在第一象限,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.6、D【解题分析】
由椭圆方程得出即可【题目详解】由可得,即所以长轴长为故选:D【题目点拨】本题考查的是由椭圆的方程得长轴长,较简单7、B【解题分析】
根据独立性检验表解题【题目详解】把握性超过99%但不超过99.5%,,选B【题目点拨】本题考查独立性检验表,属于简单题.8、B【解题分析】
根据函数的周期性可排除,同时可以确定对.由,可去绝对值函数化为,可判断对.由取特值,可确定错.【题目详解】,所以函数的周期不为,错,,周期为.=,对.当时,,,所以f(x)在上单调递增.对.,所以错.即对,填.【题目点拨】本题以绝对值函数形式综合考查三角函数求函数值、周期性、单调性、对称性等性质,需要从定义角度入手分析,也是解题之根本.9、B【解题分析】,,判断否,,,判断否,,判断是,输出,故选.10、D【解题分析】
构造二元函数,分别考虑与、、、、的关系,即可判断出相应的对称情况.【题目详解】A.,所以不关于轴对称;B.,,所以关于原点对称,也关于直线对称;C.,所以不关于轴对称;D.,所以关于直线对称,同时也关于直线对称.故选:D.【题目点拨】本题考查曲线与方程的综合应用,难度一般.若曲线关于轴对称,则将曲线中的换成,此时曲线的方程不变;若曲线关于轴对称,则将曲线中的换成,此时曲线的方程不变;若曲线关于对称,则将曲线中的换成、换成,此时曲线的方程不变;若曲线关于原点对称,则将曲线中的换成、换成,此时曲线的方程不变.11、D【解题分析】
由且,不妨设,,则,因为当时,单调递减,所以,又函数满足,所以,所以,即.故选:D.12、B【解题分析】
首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【题目详解】由题意,函数,令,所以,在区间上恰有一个最大值点和最小值点,则函数恰有一个最大值点和一个最小值点在区间,则,解答,即,故选B.【题目点拨】本题主要考查了三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
考虑的奇偶性,利用奇偶性解决问题.【题目详解】令,则有,且定义域为,关于原点对称,所以是奇函数,则,即,所以.【题目点拨】本题考查类奇偶函数的运用,难度较易.关键是先构造出奇偶函数,然后利用新函数的值去分析结果.14、【解题分析】
通过余弦定理求出AB的长,然后利用三角形的面积公式求解即可.【题目详解】设AB=c,在△ABC中,由余弦定理知AC2=AB2+BC2﹣2AB•BCcosB,即7=c2+4﹣2×2×c×cos60°,c2﹣2c﹣1=0,又c>0,∴c=1.S△ABC=AB•BCsinB=BC•h,可知S△ABC=×1×2×=.故答案为:.【题目点拨】本题考查三角形的面积求法,余弦定理的应用,考查计算能力,属于中档题.15、98【解题分析】
通过杨辉三角可知每一行由二项式系数构成,于是可得方程组,求出行数.【题目详解】三角形数阵中,每一行的数由二项式系数,组成.如多第行中有,,那么,解得,因此答案为98.【题目点拨】本题主要考查杨辉三角,二项式定理,意在考查学生数感的建立,计算能力及分析能力,难度中等.16、4【解题分析】试题分析:由题意,.考点:三视图与体积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)1【解题分析】
(1)首先求出f(x)的定义域,函数f(x)的导数,分别令它大于0,小于0,解不等式,必须注意定义域,求交集;(2)化简不等式f(x)>﹣x2,得:(x+1)[1+ln(x+1)]>kx,令g(x)=(x+1))[1+ln(x+1)]﹣kx,求出g'(x),由x>0,求出2+ln(x+1)>2,讨论k,分k≤2,k>2,由恒成立结合单调性判断k的取值,从而得到k的最大值.【题目详解】(1)函数f(x)的定义域为(﹣1,+∞),函数f(x)的导数f'(x)=﹣2x+,令f'(x)>0则>2x,解得,令f'(x)<0则,解得x>或x<,∵x>﹣1,∴f(x)的单调增区间为(﹣1,),单调减区间为(,+∞);(2)不等式f(x)>﹣x2即1﹣x2+ln(x+1)>,即1+ln(x+1)>,即(x+1)[1+ln(x+1)]>kx(k∈N*)在(0,+∞)上恒成立,令g(x)=(x+1))[1+ln(x+1)]﹣kx,则g'(x)=2+ln(x+1)﹣k,∵x>0,∴2+ln(x+1)>2,若k≤2,则g'(x)>0,即g(x)在(0,+∞)上递增,∴g(x)>g(0)即g(x)>1>0,∴(x+1)[1+ln(x+1)]>kx(k∈N*)在(0,+∞)上恒成立;若k>2,可以进一步分析,只需满足最小值比0大,即可,结合K为正整数,故k的最大值为1.【题目点拨】本题主要考查运用导数求函数的单调性,求解时应注意函数的定义域,同时考查含参不等式恒成立问题,通常运用参数分离,转化为求函数的最值,但求最值较难,本题转化为大于0的不等式,构造函数g(x),运用导数说明g(x)>0恒成立,从而得到结论.这种思想方法要掌握.18、(1)命题同题干,证明见解析;(2);(3)【解题分析】
(1)由条件可得,利用向量的线性运算证明即可;(2)由(1)的结论可得,两边同时平方计算可得结果;(3)由(1)的结论可得,两边同时平方计算可得结果.【题目详解】(1)在空间四边形中,、分、所成的比为,即,则有:.证明:;(2)由(1)的结论可得,,;(3)如图:与所成的角为,又由(1)的结论可得,,.【题目点拨】本题考查空间向量的线性运算,数量积的运算及模的运算,考查学生计算能力,是中档题.19、(1);(2).【解题分析】
(1)根据题意,将7个人全排列,再将其中前3人安排在前排,后面4人安排在后排即可,由排列数公式计算可得答案;(2)根据题意,分2步进行分析:①前排3人有4个空,从甲乙丙3人中选1人插入;②对于后排,分2种情况讨论,求出后排的排法数目,由分步计数原理计算可得答案.【题目详解】(1)根据题意,将7个人全排列,再将其中前3人安排在前排,后面4人安排在后排即可;则有种排法,(2)根据题意,分2步进行分析:①前排3人有4个空,从甲乙丙3人中选1人插入,有种排法;②对于后排,若插入的2人不相邻有种,若相邻有种,则后排的安排方法有种;则有种排法.【题目点拨】本题考查排列、组合的应用,考查逻辑推理能力、运算求解能力,求解时注意分类讨论思想的运用.20、(1);(2).【解题分析】
(1)根据正弦定理得到,再由余弦定理得到,根据特殊角的三角函数值得到结果;(2)根据余弦定理可知:,根据重要不等式和a=4得到,即,再由面积,最终得到结果.【题目详解】(1)根据正弦定理可知:,整理得,由余弦定理的推论得,,.(2)根据余弦定理可知:,且,,即.面积,当且仅当时等号成立.故面积的最大值为.【题目点拨】1.解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“”之间的等量关系与不等关系,通过基本不等式考查相关范围问题;2.注意与三角函数的图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工智能分公司技术研发方案
- 2024年【初中物理】九年级期末计算题欧姆定律在串并联电路中的应用
- 《有余数的除法》(教案)2023-2024学年数学 二年级下册
- 酒店客房卫生标准检查制度
- 两位数加一位数进位(导学案)人教版一年级下册数学
- 超市员工安全培训预案
- 新冠肺炎疫情防控应急预案与数字健康技术
- 大班主题活动教案:风筝
- 大班下学期体育教案《武林大会》
- 会议室玻璃隔断设计方案
- 《食品添加剂应用技术》第二版 课件 任务3.2 抗氧化剂的使用
- 会议与协作平台管理制度
- 消毒供应室特种设备管理
- 食品智能化加工技术
- 银行转账截图生成器制作你想要的转账截图
- 2022年版 义务教育《数学》课程标准
- 2024重度哮喘诊断与处理中国专家共识解读课件
- 家长会课件:小学一年级家长会语文老师课件
- 成人住院患者静脉血栓栓塞症Caprini、Padua风险评估量表
- 小学团委支部工作计划
- 小班安全我要跟着老师走
评论
0/150
提交评论